Monica Piras
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monica Piras.
Journal of Maternal-fetal & Neonatal Medicine | 2012
Daniela Fanni; Clara Gerosa; Sonia Nemolato; Cristina Mocci; Giuseppina Pichiri; Pierpaolo Coni; Terenzio Congiu; Marco Piludu; Monica Piras; Matteo Fraschini; Marco Zaffanello; Nicoletta Iacovidou; Peter Van Eyken; Guido Monga; Gavino Faa; Vassilios Fanos
An emerging hypothesis from the recent literature explain how specific adverse factors related with growth retardation as well as of low birth weight (LBW) might influence renal development during fetal life and then the insurgence of hypertension and renal disease in adulthood. In this article, after introducing a brief overview of human nephrogenesis, the most important factors influencing nephron number at birth will be reviewed, focusing on the “in utero” experiences that lead to an increased risk of developing hypertension and/or kidney disease in adult. Since nephrogenesis in preterm human newborns does not stop at birth, but it continues for 4–6 weeks postnatally, a better knowledge of the mechanisms able to accelerate nephrogenesis in the perinatal period, could represent a powerful tool in the hands of neonatologists. We suggest to define this approach to a possible therapy of a deficient nephrogenesis at birth “physiological renal regenerating medicine”. Our goal in preterm infants, especially VLBW, could be to prolong the nephrogenesis not only for 6 weeks after birth but until 36 weeks of post conceptual age, allowing newborn kidneys to restore their nephron endowment, escaping susceptibility to hypertension and to renal disease later in life.
Chemical Communications | 2011
Monica Piras; Andrea Salis; Marco Piludu; Daniela Steri; Maura Monduzzi
TEM images of human lysozyme loaded on SBA-15 mesoporous silica were obtained through the immunogold staining (IGS) method. IGS is based on the specific interaction between proteins and colloidal gold-conjugated antibodies. Clear evidence that protein molecules are adsorbed both on the external and on the inner pore surface is presented.
Journal of Maternal-fetal & Neonatal Medicine | 2012
Marco Piludu; Vassilios Fanos; Terenzio Congiu; Monica Piras; Clara Gerosa; Cristina Mocci; Daniela Fanni; Sonia Nemolato; Sandro Muntoni; Nicoletta Iacovidou; Gavino Faa
Nephrogenesis is mainly characterized by the interaction of two distinct renal constituents, the ureteric bud and the metanephric mesenchyme. In this paper we describe by means of light and electron microscopic techniques the morphological events that take place during the early stages of cap mesenchymal formation. Samples of normal renal tissue were excised from newborn NOD mice and processed by standard light and electron microscopy techniques. In all samples examined we detected the presence of several cap mesenchymal aggregates in different stages of differentiation. They varied from small solid nodules with few ovoid cells to bigger pine-cone-like aggregates, characterized by a peculiar distribution and morphology of their cellular constituents. Our data highlight, for the first time, the presence of a specific cap mesenchymal structure, the pine-cone body and show, at ultrastructural level, how each cap aggregate epithelializes proceeding in stages from a condensed mesenchymal aggregate to the renal vesicle, through the intermediate “pine-cone body” stage.
Science of The Total Environment | 2016
Monica Piras; Giuseppe Mascaro; Roberto Deidda; Enrique R. Vivoni
Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs.
European Journal of Histochemistry | 2007
Giacomo Diaz; Miriam Melis; Anna Maria Giovanna Musinu; Marco Piludu; Monica Piras; Angela Maria Falchi
MTT (3-(4, 5-dimethyl-2-thiazolyl)-2, 5-dihphenyltetrazolium bromide) assay is a widely used method to assess cell viability and proliferation. MTT is readily taken up by cells and enzymatically reduced to formazan, a dark compound which accumulates in cytoplasmic granules. Formazan is later eliminated by the cell by a mechanisms often indicated as exocytosis, that produces characteristic needle-like aggregates on the cell surface. The shape of formazan aggregates and the rate of exocytosis change in the presence of bioactive amyloid beta peptides (Abeta) and cholesterol. Though the cellular mechanisms involved in MTT reduction have been extensively investigated, the exact nature of formazan granules and the process of exocytosis are still obscure. Using Nile Red, which stains differentially neutral and polar lipids, and a fluorescent analog of cholesterol (NBD-cholesterol), we found that formazan localized in lipid droplets, consistent with the lipophilic nature of formazan. However, formazan granules and aggregates were also found to form after killing cells with paraformaldehyde fixation. Moreover, formazan aggregates were also obtained in cell-free media, using ascorbic acid to reduce MTT. The density and shape of formazan aggregates obtained in cell-free media was sensitive to cholesterol and Abeta. In cells, electron microscopy failed to detect the presence of secretory vesicles, but revealed unusual fibers of 50 nm of diameter extending throughout the cytoplasm. Taken together, these findings suggest that formazan efflux is driven by physico-chemical interactions at molecular level without involving higher cytological mechanisms.
Journal of Oral Pathology & Medicine | 2010
Monica Piras; Arthur R. Hand; Maija I. Mednieks; Marco Piludu
BACKGROUND Salivary dysfunction and oral disorders have been described in both type 1 and type 2 diabetes mellitus. However, the cellular and molecular consequences of diabetes on oral tissues remain to be ascertained. The purpose of this investigation was to study, by means of electron microscopy, the morphologic and molecular changes that occur in salivary glands during diabetes. METHODS Biopsy samples of parotid glands were excised from non-diabetic and diabetic (type 1 and type 2) consenting patients and processed by standard methods for routine morphology and electron microscopic immunogold labeling. Specific antibodies were used to determine and quantify the expression of secretory proteins (alphaamylase and the regulatory subunit of type II protein kinase A). RESULTS Morphologic changes in the diabetic samples included increased numbers of secretory granules, and alterations in internal granule structure. Quantitative analysis of immunogold labeling showed that labeling densities were variable among the parotid gland samples. In type 1 diabetes amylase expression was greater than in non-diabetic glands, whereas in type 2 diabetes it was not significantly changed. Expression of type II regulatory subunits was slightly, although not significantly, increased in acinar secretory granules of type 1 diabetic samples and was unchanged in type 2 diabetic samples. CONCLUSIONS Our data show that diabetes elicits specific changes in secretory protein expression in human salivary glands, thus contributing to the altered oral environment and oral disease associated with diabetes.
Journal of Anatomy | 2009
Marco Piludu; Ar Hand; Margherita Cossu; Monica Piras
Salivary mucins MG1 and MG2 have been found in the oral cavity where they perform several functions such as the formation of the mucous layer covering the oral mucosa and teeth. Recent studies have demonstrated their presence in other organs and tissues. The aim of this study was to determine their expression in human bulbourethral (Cowpers) glands. Normal bulbourethral glands were obtained at surgery and fixed in a mixture of 1% paraformaldehyde–1.25% glutaraldehyde in 0.1 m cacodylate buffer and embedded in Epon resin. Thin sections were labeled with rabbit antibodies to MG1 or to an N‐terminal synthetic peptide of MG2, followed by gold‐labeled goat anti‐rabbit IgG. The granules of all mucous cells were intensely reactive with anti‐MG1, whereas no labeling was detected for MG2. These results indicate that MG1 is not exclusively a salivary component and furthermore show that bulbourethral glands represent a significant source of the MG1 detected in human seminal plasma.
PLOS ONE | 2015
Marco Piludu; Monica Piras; Giuseppina Pichiri; Pierpaolo Coni; Germano Orrù; Tiziana Cabras; Irene Messana; Gavino Faa; Massimo Castagnola
Due to its actin-sequestering properties, thymosin beta-4 (Tβ4) is considered to play a significant role in the cellular metabolism. Several physiological properties of Tβ4 have been reported;, however, many questions concerning its cellular function remain to be ascertained. To better understand the role of this small peptide we have analyzed by means of transmission immunoelectron microscopy techniques the ultrastructural localization of Tβ4 in HepG2 cells. Samples of HepG2 cells were fixed in a mixture of 3% formaldehyde and 0.1% glutaraldehyde in 0.1 M cacodylate buffer and processed for standard electron microscopic techniques. The samples were dehydrated in a cold graded methanol series and embedded in LR gold resin. Ultrathin sections were labeled with rabbit antibodies to Tβ4, followed by gold-labeled goat anti-rabbit, stained with uranyl acetate and bismuth subnitrate, observed and photographed in a JEOL 100S transmission electron microscope. High-resolution electron microscopy showed that Tβ4 was mainly restricted to the cytoplasm of HepG2 growing in complete medium. A strong Tβ4 reactivity was detected in the perinuclear region of the cytoplasmic compartment where gold particles appeared strictly associated to the nuclear membrane. In the nucleus specific Tβ4 labeling was observed in the nucleolus. The above electron microscopic results confirm and extend previous observations at light microscopic level, highlighting the subcellular distribution of Tβ4 in both cytoplasmic and nuclear compartments of HepG2 cells. The meaning of Tβ4 presence in the nucleolus is not on the best of our knowledge clarified yet. It could account for the interaction of Tβ4 with nucleolar actin and according with this hypothesis, Tβ4 could contribute together with the other nucleolar acting binding proteins to modulate the transcription activity of the RNA polymerases.
European Journal of Oral Sciences | 2010
Monica Piras; Arthur R. Hand; Giorgio Tore; Gian Peppino Ledda; Marco Piludu
As a result of their presence throughout the mouth in the submucosa or between muscle fibers, minor salivary glands secrete directly and continuously into the oral cavity, providing mucosal surfaces with highly glycosylated proteins that are active in bacterial aggregation and in oral tissue lubrication. In this study, we investigated the ultrastructural localization of the MUC5B and MUC7 mucins in human labial glands by means of a postembedding immunogold technique. Thin sections of normal human labial glands, obtained during surgery, were incubated with polyclonal antibodies to human salivary mucins MUC5B and MUC7, and then with gold-labeled secondary antibodies. Specific MUC5B reactivity was found in the secretory granules of mucous cells of all glands examined, and was associated with the luminal membrane of duct cells. MUC7 labeling was observed in the granules of both mucous and seromucous secretory cells of the glandular parenchyma. Quantitative analyses demonstrated that seromucous granules have higher immunogold labeling densities for MUC7 than mucous granules. Our immunohistochemical data extend the results of previous light microscopic studies of MUC5B and MUC7 localizations, pointing out the significant contribution of human labial glands in the secretion process of these two mucins.
Journal of Anatomy | 2006
Maria Serenella Lantini; Margherita Cossu; Michela Isola; Monica Piras; Marco Piludu
The subcellular distribution of the epidermal growth factor receptor (EGFr) was demonstrated in the normal human submandibular gland by means of immunogold cytochemistry. EGFr labelling appeared in both acinar and ductal cells, where strong immunoreactivity was associated with a tubulovesicular system near the basolateral surfaces. In addition, groups of reactive vesicles were highlighted among secretory granules of both serous and mucous cells and at the apex of ductal cells. Basolateral vesicles were interpreted as being a result of EGFr internalization after activation by an exogenous ligand, although the functional meaning of those located apically remains unclear.