Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Stoppini is active.

Publication


Featured researches published by Monica Stoppini.


Protein Science | 2009

The solution structure of human β2‐microglobulin reveals the prodromes of its amyloid transition

Giuliana Verdone; Alessandra Corazza; Paolo Viglino; Fabio Pettirossi; Sofia Giorgetti; Palma Mangione; Alessia Andreola; Monica Stoppini; Vittorio Bellotti; Gennaro Esposito

The solution structure of human β2‐microglobulin (β2‐m), the nonpolymorphic component of class I major histocompatibility complex (MHC‐I), was determined by 1H NMR spectroscopy and restrained modeling calculations. Compared to previous structural data obtained from the NMR secondary structure of the isolated protein and the crystal structure of MHC‐I, in which the protein is associated to the heavy‐chain component, several differences are observed. The most important rearrangements were observed for (1) strands V and VI (loss of the C‐terminal and N‐terminal end, respectively), (2) interstrand loop V‐VI, and (3) strand I, including the N‐terminal segment (displacement outward of the molecular core). These modifications can be considered as the prodromes of the amyloid transition. Solvation of the protected regions in MHC‐I decreases the tertiary packing by breaking the contiguity of the surface hydrophobic patches at the interface with heavy chain and the nearby region at the surface charge cluster of the C‐terminal segment. As a result, the molecule is placed in a state in which even minor charge and solvation changes in response to pH or ionic‐strength variations can easily compromise the hydrophobic/hydrophilic balance and trigger the transition into a partially unfolded intermediate that starts with unpairing of strand I and leads to polymerization and precipitation into fibrils or amorphous aggregates. The same mechanism accounts for the partial unfolding and fiber formation subsequent to Cu2+ binding, which is shown to occur primarily at His 31 and involve partially also His 13, the next available His residue along the partial unfolding pathway.


Journal of Biological Chemistry | 2006

Collagen Plays an Active Role in the Aggregation of β2-Microglobulin under Physiopathological Conditions of Dialysis-related Amyloidosis

Annalisa Relini; Claudio Canale; Silvia De Stefano; Sofia Giorgetti; Monica Stoppini; Antonio Rossi; Alessandra Corazza; Gennaro Esposito; Alessandra Gliozzi; Vittorio Bellotti

Dialysis-related amyloidosis is characterized by the deposition of insoluble fibrils ofβ2-microglobulin (β2-m) in the musculoskeletal system. Atomic force microscopy inspection of ex vivo amyloid material reveals the presence of bundles of fibrils often associated to collagen fibrils. Aggregation experiments were undertaken in vitro with the aim of reproducing the physiopathological fibrillation process. To this purpose, atomic force microscopy, fluorescence techniques, and NMR were employed. We found that in temperature and pH conditions similar to those occurring in periarticular tissues in the presence of flogistic processes, β2-m fibrillogenesis takes place in the presence of fibrillar collagen, whereas no fibrils are obtained without collagen. Moreover, the morphology ofβ2-m fibrils obtained in vitro in the presence of collagen is extremely similar to that observed in the ex vivo sample. This result indicates that collagen plays a crucial role in β2-m amyloid deposition under physiopathological conditions and suggests an explanation for the strict specificity of dialysis-related amyloidosis for the tissues of the skeletal system. We hypothesize that positively charged regions along the collagen fiber could play a direct role inβ2-m fibrillogenesis. This hypothesis is sustained by aggregation experiments performed by replacing collagen with a poly-l-lysine-coated mica surface. As shown by NMR measurements, no similar process occurs when poly-l-lysine is dissolved in solution with β2-m. Overall, the findings are consistent with the estimates resulting from a simplified collagen model whereby electrostatic effects can lead to high local concentrations of oppositely charged species, such as β2-m, that decay on moving away from the fiber surface.


Applied Categorical Structures | 2014

Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning

Emeline Barbet-Massin; Andrew J. Pell; Joren S. Retel; Loren B. Andreas; Kristaps Jaudzems; W. Trent Franks; Andrew J. Nieuwkoop; Matthias Hiller; Victoria A. Higman; Paul Guerry; Andrea Bertarello; Michael J. Knight; Michele Felletti; Tanguy Le Marchand; Svetlana Kotelovica; Inara Akopjana; Kaspars Tars; Monica Stoppini; Vittorio Bellotti; Martino Bolognesi; Stefano Ricagno; James J. Chou; Robert G. Griffin; Hartmut Oschkinat; Anne Lesage; Lyndon Emsley; Torsten Herrmann; Guido Pintacuda

Using a set of six 1H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5–30 kDa proteins. The approach relies on perdeuteration, amide 2H/1H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary 13C/15N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.


Cellular and Molecular Life Sciences | 1999

Biological activity and pathological implications of misfolded proteins.

Vittorio Bellotti; Palma Mangione; Monica Stoppini

Abstract. The physiological metabolism of proteins guarantees that different cellular compartments contain the appropriate concentration of proteins to perform their biological functions and, after a variable period of wear and tear, mediates their natural catabolism. The equilibrium between protein synthesis and catabolism ensures an effective turnover, but hereditary or acquired abnormalities of protein structure can provoke a premature loss of biological function, an accelerated catabolism and diseases caused by the loss of an irreplaceable function. In certain proteins, abnormal structure and metabolism are associated with a strong tendency to self-aggregation into a polymeric fibrillar structure, and in these cases the disease is not principally caused by the loss of an irreplaceable function but by the action of this new biological entity. Amyloid fibrils are an apparently inert, insoluble, mainly extracellular protein polymer that kills the cell without tissue necrosis but by activation of the apoptotic mechanism. We analyzed the data reported so far on the structural and functional properties of four prototypic proteins with well-known biological functions (lysozyme, transthyretin, β2-microglobulin and apolipoprotein AI) that are able to create amyloid fibrils under certain conditions, with the perspective of evaluating whether the achievement of biological function favors or inhibits the process of fibril formation. Furthermore, studying the biological functions carried out by amyloid fibrils reveals new types of protein-protein interactions in the transmission of messages to cells and may provide new ideas for effective therapeutic strategies.


Journal of Biological Chemistry | 2008

Heparin Strongly Enhances the Formation of β2-Microglobulin Amyloid Fibrils in the Presence of Type I Collagen

Annalisa Relini; Silvia De Stefano; Silvia Torrassa; Ornella Cavalleri; Alessandra Gliozzi; Sofia Giorgetti; Sara Raimondi; Loredana Marchese; Laura Verga; Antonio Rossi; Monica Stoppini; Vittorio Bellotti

The tissue specificity of fibrillar deposition in dialysis-related amyloidosis is most likely associated with the peculiar interaction of β2-microglobulin (β2-m) with collagen fibers. However, other co-factors such as glycosaminoglycans might facilitate amyloid formation. In this study we have investigated the role of heparin in the process of collagen-driven amyloidogenesis. In fact, heparin is a well known positive effector of fibrillogenesis, and the elucidation of its potential effect in this type of amyloidosis is particularly relevant because heparin is regularly given to patients subject to hemodialysis to prevent blood clotting. We have monitored by atomic force microscopy the formation of β2-m amyloid fibrils in the presence of collagen fibers, and we have discovered that heparin strongly accelerates amyloid deposition. The mechanism of this effect is still largely unexplained. Using dynamic light scattering, we have found that heparin promotes β2-m aggregation in solution at pH 6.4. Morphology and structure of fibrils obtained in the presence of collagen and heparin are highly similar to those of natural fibrils. The fibril surface topology, investigated by limited proteolysis, suggests that the general assembly of amyloid fibrils grown under these conditions and in vitro at low pH is similar. The exposure of these fibrils to trypsin generates a cleavage at the C-terminal of lysine 6 and creates the 7–99 truncated form of β2-m (ΔN6β2-m) that is a ubiquitous constituent of the natural β2-m fibrils. The formation of this β2-m species, which has a strong propensity to aggregate, might play an important role in the acceleration of local amyloid deposition.


The New England Journal of Medicine | 2012

Hereditary systemic amyloidosis due to Asp76Asn variant β2-microglobulin.

Sophie Valleix; Julian D. Gillmore; Franck Bridoux; Palma Mangione; Ahmet Dogan; Brigitte Nedelec; Mathieu Boimard; Guy Touchard; Jean-Michel Goujon; Corinne Lacombe; Pierre Lozeron; David Adams; Catherine Lacroix; Thierry Maisonobe; Violaine Planté-Bordeneuve; Julie A. Vrana; Jason D. Theis; Sofia Giorgetti; Riccardo Porcari; Stefano Ricagno; Martino Bolognesi; Monica Stoppini; Marc Delpech; Mark B. Pepys; Philip N. Hawkins; Vittorio Bellotti

We describe a kindred with slowly progressive gastrointestinal symptoms and autonomic neuropathy caused by autosomal dominant, hereditary systemic amyloidosis. The amyloid consists of Asp76Asn variant β(2)-microglobulin. Unlike patients with dialysis-related amyloidosis caused by sustained high plasma concentrations of wild-type β(2)-microglobulin, the affected members of this kindred had normal renal function and normal circulating β(2)-microglobulin values. The Asp76Asn β(2)-microglobulin variant was thermodynamically unstable and remarkably fibrillogenic in vitro under physiological conditions. Previous studies of β(2)-microglobulin aggregation have not shown such amyloidogenicity for single-residue substitutions. Comprehensive biophysical characterization of the β(2)-microglobulin variant, including its 1.40-Å, three-dimensional structure, should allow further elucidation of fibrillogenesis and protein misfolding.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic β2-microglobulin variant

Katarzyna Domanska; Saskia Vanderhaegen; Vasundara Srinivasan; Els Pardon; Florine Dupeux; José A. Márquez; Sofia Giorgetti; Monica Stoppini; Lode Wyns; Vittorio Bellotti; Jan Steyaert

Atomic-level structural investigation of the key conformational intermediates of amyloidogenesis remains a challenge. Here we demonstrate the utility of nanobodies to trap and characterize intermediates of β2-microglobulin (β2m) amyloidogenesis by X-ray crystallography. For this purpose, we selected five single domain antibodies that block the fibrillogenesis of a proteolytic amyloidogenic fragment of β2m (ΔN6β2m). The crystal structure of ΔN6β2m in complex with one of these nanobodies (Nb24) identifies domain swapping as a plausible mechanism of self-association of this amyloidogenic protein. In the swapped dimer, two extended hinge loops—corresponding to the heptapetide NHVTLSQ that forms amyloid in isolation—are unmasked and fold into a new two-stranded antiparallel β-sheet. The β-strands of this sheet are prone to self-associate and stack perpendicular to the direction of the strands to build large intermolecular β-sheets that run parallel to the axis of growing oligomers, providing an elongation mechanism by self-templated growth.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Identification, retinoid binding, and x-ray analysis of a human retinol-binding protein.

Claudia Folli; Vito Calderone; Simone Ottonello; Angelo Bolchi; Giuseppe Zanotti; Monica Stoppini

Two cellular retinol-binding proteins (CRBP I and II) with distinct tissue distributions and retinoid-binding properties have been recognized thus far in mammals. Here, we report the identification of a human retinol-binding protein resembling type I (55.6% identity) and type II (49.6% identity) CRBPs, but with a unique H residue in the retinoid-binding site and a distinctively different tissue distribution. Additionally, this binding protein (CRBP III) exhibits a remarkable sequence identity (62.2%) with the recently identified ι-crystallin/CRBP of the diurnal gecko Lygodactylus picturatus [Werten, P. J. L., Röll, B., van Alten, D. M. F. & de Jong, W. W. (2000) Proc. Natl. Acad. Sci. USA 97, 3282–3287 (First Published March 21, 2000; 10.1073/pnas.050500597)]. CRBP III and all-trans-retinol form a complex (Kd ≈ 60 nM), the absorption spectrum of which is characterized by the peculiar fine structure typical of the spectra of holo-CRBP I and II. As revealed by a 2.3-Å x-ray molecular model of apo-CRBP III, the amino acid residues that line the retinol-binding site in CRBP I and II are positioned nearly identically in the structure of CRBP III. At variance with the human CRBP I and II mRNAs, which are most abundant in ovary and intestine, respectively, the CRBP III mRNA is expressed at the highest levels in kidney and liver thus suggesting a prominent role for human CRBP III as an intracellular mediator of retinol metabolism in these tissues.


Journal of Molecular Biology | 2008

The Controlling Roles of Trp60 and Trp95 in β2-Microglobulin Function, Folding and Amyloid Aggregation Properties

Gennaro Esposito; Stefano Ricagno; Alessandra Corazza; Enrico Rennella; Devrim Gümral; Maria Chiara Mimmi; Elena Betto; Carlo Pucillo; Paolo Viglino; Sara Raimondi; Sofia Giorgetti; Benedetta Bolognesi; Giampaolo Merlini; Monica Stoppini; Martino Bolognesi; Vittorio Bellotti

Amyloidosis associated to hemodialysis is caused by persistently high beta(2)-microglobulin (beta(2)m) serum levels. beta(2)m is an intrinsically amyloidogenic protein whose capacity to assemble into amyloid fibrils in vitro and in vivo is concentration dependent; no beta(2)m genetic variant is known in the human population. We investigated the roles of two evolutionary conserved Trp residues in relation to beta(2)m structure, function and folding/misfolding by means of a combined biophysical and functional approach. We show that Trp60 plays a functional role in promoting the association of beta(2)m in class I major histocompatibility complex; it is exposed to the solvent at the apex of a protein loop in order to accomplish such function. The Trp60-->Gly mutation has a threefold effect: it stabilizes beta(2)m, inhibits beta(2)m amyloidogenic propensity and weakens the interaction with the class I major histocompatibility complex heavy chain. On the contrary, Trp95 is buried in the beta(2)m core; the Trp95-->Gly mutation destabilizes the protein, which is unfolded in solution, yielding nonfibrillar beta(2)m aggregates. Trp60 and Trp95 therefore play differential and complementary roles in beta(2)m, being relevant for function (Trp60) and for maintenance of a properly folded structure (Trp95) while affecting in distinct ways the intrinsic propensity of wild-type beta(2)m towards self-aggregation into amyloid fibrils.


Journal of Biological Chemistry | 2011

Effect of Tetracyclines on the Dynamics of Formation and Destructuration of β2-Microglobulin Amyloid Fibrils

Sofia Giorgetti; Sara Raimondi; Katiuscia Pagano; Annalisa Relini; Monica Bucciantini; Alessandra Corazza; Luca Codutti; Mario Salmona; Palma Mangione; Lino Colombo; Ada De Luigi; Riccardo Porcari; Alessandra Gliozzi; Massimo Stefani; Gennaro Esposito; Vittorio Bellotti; Monica Stoppini

The discovery of methods suitable for the conversion in vitro of native proteins into amyloid fibrils has shed light on the molecular basis of amyloidosis and has provided fundamental tools for drug discovery. We have studied the capacity of a small library of tetracycline analogues to modulate the formation or destructuration of β2-microglobulin fibrils. The inhibition of fibrillogenesis of the wild type protein was first established in the presence of 20% trifluoroethanol and confirmed under a more physiologic environment including heparin and collagen. The latter conditions were also used to study the highly amyloidogenic variant, P32G. The NMR analysis showed that doxycycline inhibits β2-microglobulin self-association and stabilizes the native-like species through fast exchange interactions involving specific regions of the protein. Cell viability assays demonstrated that the drug abolishes the natural cytotoxic activity of soluble β2-microglobulin, further strengthening a possible in vivo therapeutic exploitation of this drug. Doxycycline can disassemble preformed fibrils, but the IC50 is 5-fold higher than that necessary for the inhibition of fibrillogenesis. Fibril destructuration is a dynamic and time-dependent process characterized by the early formation of cytotoxic protein aggregates that, in a few hours, convert into non-toxic insoluble material. The efficacy of doxycycline as a drug against dialysis-related amyloidosis would benefit from the ability of the drug to accumulate just in the skeletal system where amyloid is formed. In these tissues, the doxycycline concentration reaches values several folds higher than those resulting in inhibition of amyloidogenesis and amyloid destructuration in vitro.

Collaboration


Dive into the Monica Stoppini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge