Monika Bright
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monika Bright.
Nature Reviews Microbiology | 2010
Monika Bright; Silvia Bulgheresi
The perpetuation of symbioses through host generations relies on symbiont transmission. Horizontally transmitted symbionts are taken up from the environment anew by each host generation, and vertically transmitted symbionts are most often transferred through the female germ line. Mixed modes also exist. In this Review we describe the journey of symbionts from the initial contact to their final residence. We provide an overview of the molecular mechanisms that mediate symbiont attraction and accumulation, interpartner recognition and selection, as well as symbiont confrontation with the host immune system. We also discuss how the two main transmission modes shape the evolution of the symbiotic partners.
Nature | 2006
Andrea D. Nussbaumer; Charles R. Fisher; Monika Bright
Transmission of obligate bacterial symbionts between generations is vital for the survival of the host. Although the larvae of certain hydrothermal vent tubeworms (Vestimentifera, Siboglinidae) are symbiont-free and possess a transient digestive system, these structures are lost during development, resulting in adult animals that are nutritionally dependent on their bacterial symbionts. Thus, each generation of tubeworms must be newly colonized with its specific symbiont. Here we present a model for tubeworm symbiont acquisition and the development of the symbiont-housing organ, the trophosome. Our data indicate that the bacterial symbionts colonize the developing tube of the settled larvae and enter the host through the skin, a process that continues through the early juvenile stages during which the trophosome is established from mesodermal tissue. In later juvenile stages we observed massive apoptosis of host epidermis, muscles and undifferentiated mesodermal tissue, which was coincident with the cessation of the colonization process. Characterizing the symbiont transmission process in this finely tuned mutualistic symbiosis provides another model of symbiont acquisition and additional insights into underlying mechanisms common to both pathogenic infections and beneficial host–symbiont interactions.
PLOS ONE | 2010
Ann Vanreusel; Annelies De Groote; Sabine Gollner; Monika Bright
Background Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps. Methodology This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss). Findings Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents. Conclusions It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem.
The Biological Bulletin | 2005
Jennifer L. Salerno; Stephen A. Macko; Steve J. Hallam; Monika Bright; Yong-Jin Won; Zoe McKiness; Cindy Lee Van Dover
The densities of chemoautotrophic and methanotrophic symbiont morphotypes were determined in life- history stages (post-larvae, juveniles, adults) of two species of mussels (Bathymodiolus azoricus and B. heckerae) from deep-sea chemosynthetic environments (the Lucky Strike hydrothermal vent and the Blake Ridge cold seep) in the Atlantic Ocean. Both symbiont morphotypes were observed in all specimens and in the same relative proportions, regardless of life-history stage. The relative abundance of symbiont morphotypes, determined by transmission electron microscopy, was different in the two species: chemoautotrophs were dominant (13:1–18:1) in B. azoricus from the vent site; methanotrophs were dominant (2:1–3:1) in B. heckerae from the seep site. The ratio of CH4:H2S is proposed as a determinant of the relative abundance of symbiont types: where CH4:H2S is less than 1, as at the Lucky Strike site, chemoautotrophic symbionts dominate; where CH4:H2S is greater than 2, as at the seep site, methanotrophs dominate. Organic carbon and nitrogen isotopic compositions of B. azoricus (δ13C = −30‰; δ15N = −9‰) and B. heckerae (δ13C = −56‰; δ15N = −2‰) varied little among life-history stages and provided no record of a larval diet of photosynthetically derived organic material in the post-larval and juvenile stages.
Applied and Environmental Microbiology | 2006
Christian Rinke; Stephan Schmitz-Esser; Kilian Stoecker; Andrea D. Nussbaumer; Dávid A. Molnár; Katrina Vanura; Michael Wagner; Matthias Horn; Jörg A. Ott; Monika Bright
ABSTRACT Zoothamnium niveum is a giant, colonial marine ciliate from sulfide-rich habitats obligatorily covered with chemoautotrophic, sulfide-oxidizing bacteria which appear as coccoid rods and rods with a series of intermediate shapes. Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization showed that the ectosymbiont of Z. niveum belongs to only one pleomorphic phylotype. The Z. niveum ectosymbiont is only moderately related to previously identified groups of thiotrophic symbionts within the Gammaproteobacteria, and shows highest 16S rRNA sequence similarity with the free-living sulfur-oxidizing bacterial strain ODIII6 from shallow-water hydrothermal vents of the Mediterranean Sea (94.5%) and an endosymbiont from a deep-sea hydrothermal vent gastropod of the Indian Ocean Ridge (93.1%). A replacement of this specific ectosymbiont by a variety of other bacteria was observed only for senescent basal parts of the host colonies. The taxonomic status “Candidatus Thiobios zoothamnicoli” is proposed for the ectosymbiont of Z. niveum based on its ultrastructure, its 16S rRNA gene, the intergenic spacer region, and its partial 23S rRNA gene sequence.
Applied and Environmental Microbiology | 2008
Tara L. Harmer; Randi D. Rotjan; Andrea D. Nussbaumer; Monika Bright; Andrew W. Ng; Eric G. DeChaine; Colleen M. Cavanaugh
ABSTRACT Recent evidence suggests that deep-sea vestimentiferan tube worms acquire their endosymbiotic bacteria from the environment each generation; thus, free-living symbionts should exist. Here, free-living tube worm symbiont phylotypes were detected in vent seawater and in biofilms at multiple deep-sea vent habitats by PCR amplification, DNA sequence analysis, and fluorescence in situ hybridization. These findings support environmental transmission as a means of symbiont acquisition for deep-sea tube worms.
Eos, Transactions American Geophysical Union | 2007
Harry H. Roberts; Robert S. Carney; Mathew Kupchik; Charles R. Fisher; Kim Nelson; Erin L. Becker; Liz Goehring; Stephanie Lessard-Pilon; Guy Telesnicki; Bernie B. Bernard; James M. Brooks; Monika Bright; Erik E. Cordes; Stéphane Hourdez; Jesse Hunt; William Shedd; Gregory S. Boland; Samantha B. Joye; Vladimir A. Samarkin; Meaghan Bernier; Marshall W. Bowles; Ian R. MacDonald; Helge Niemann; Cindy Petersen; Cheryl L. Morrison; Jeremy Potter
Many of the worlds productive deepwater hydrocarbon basins experience significant and ongoing vertical migration of fluids and gases to the modern seafloor. These products, which are composed of hydrocarbon gases, crude oil, formation fluids, and fluidized sediment, dramatically change the geologic character of the ocean floor, and they create sites where chemosynthetic communities supported by sulfide and hydrocarbons flourish. Unique fauna inhabit these sites, and the chemosynthetic primary production results in communities with biomass much greater than that of the surrounding seafloor.
The Biological Bulletin | 2011
Sigrid Katz; Waltraud Klepal; Monika Bright
The polychaete family Siboglinidae, which is currently construed as comprising the Frenulata, Monilifera (composed of Sclerolinum), Vestimentifera, and Osedax, has become known for its specialized symbiont-housing organ called the trophosome. This organ replaced the digestive system of the worms and is located in the elongated trunk region in Frenulata, Sclerolinum, and Vestimentifera. Currently two types of trophosomes have been described: in the taxa Frenulata and Sclerolinum the bacteriocytes originate from endoderm, and in Vestimentifera they originate from mesoderm. In Osedax, a trophosome was described as lacking (Rouse et al., 2004), but bacteriocytes are located in Osedaxs characteristic root tissue. Here, we argue for a consistent name for the symbiont-housing tissue, namely trophosome, as in other siboglinids. In this study we provide morphological evidence that in Osedax the bacteriocytes are derived from somatic mesoderm. We show that the trophosome in Osedax is an apolar tissue composed of bacteriocytes and nonsymbiotic cells. As in vestimentiferans, a specific cell cycle was identified; however, in this case it is directed from the posterior to the anterior end of the worms instead of from the center toward the periphery. Comparison of all siboglinid trophosomes and re-evaluation of their body regions allows us to discuss whether the trophosomes are homologous and to hypothesize about the organization of the last common ancestor of Siboglinidae.
PLOS ONE | 2010
Sabine Gollner; Viatcheslav N. Ivanenko; Pedro Martínez Arbizu; Monika Bright
Background Copepoda is one of the most prominent higher taxa with almost 80 described species at deep-sea hydrothermal vents. The unique copepod family Dirivultidae with currently 50 described species is the most species rich invertebrate family at hydrothermal vents. Methodology/Principal Findings We reviewed the literature of Dirivultidae and provide a complete key to species, and map geographical and habitat specific distribution. In addition we discuss the ecology and origin of this family. Conclusions/Significance Dirivultidae are only present at deep-sea hydrothermal vents and along the axial summit trough of midocean ridges, with the exception of Dirivultus dentaneus found associated with Lamellibrachia species at 1125 m depth off southern California. To our current knowledge Dirivultidae are unknown from shallow-water vents, seeps, whale falls, and wood falls. They are a prominent part of all communities at vents and in certain habitat types (like sulfide chimneys colonized by pompei worms) they are the most abundant animals. They are free-living on hard substrate, mostly found in aggregations of various foundation species (e.g. alvinellids, vestimentiferans, and bivalves). Most dirivultid species colonize more than one habitat type. Dirivultids have a world-wide distribution, but most genera and species are endemic to a single biogeographic region. Their origin is unclear yet, but immigration from other deep-sea chemosynthetic habitats (stepping stone hypothesis) or from the deep-sea sediments seems unlikely, since Dirivultidae are unknown from these environments. Dirivultidae is the most species rich family and thus can be considered the most successful taxon at deep-sea vents.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Julia Klose; Martin F. Polz; Michael Wagner; Mario P. Schimak; Sabine Gollner; Monika Bright
Significance For horizontally transmitted, facultative symbionts, cycles of infection and escape from the host are crucial for the persistence over host generations. The hydrothermal vent tubeworm Riftia pachyptila is entirely nourished by its thiotrophic endosymbiotic bacteria, which are acquired horizontally in settled larvae; however, release back into the environment has not been demonstrated. We show experimentally that viable symbionts are released upon host death. Moreover, observations of turnover of tubeworm clumps after a volcanic eruption provide evidence for rapid colonization, growth, and death. The observed connectivity of host-associated and free-living symbiont populations helps to explain the stability of this mutualism over ecological and evolutionary timescales. Theory predicts that horizontal acquisition of symbionts by plants and animals must be coupled to release and limited dispersal of symbionts for intergenerational persistence of mutualisms. For deep-sea hydrothermal vent tubeworms (Vestimentifera, Siboglinidae), it has been demonstrated that a few symbiotic bacteria infect aposymbiotic host larvae and grow in a newly formed organ, the trophosome. However, whether viable symbionts can be released to augment environmental populations has been doubtful, because (i) the adult worms lack obvious openings and (ii) the vast majority of symbionts has been regarded as terminally differentiated. Here we show experimentally that symbionts rapidly escape their hosts upon death and recruit to surfaces where they proliferate. Estimating symbiont release from our experiments taken together with well-known tubeworm density ranges, we suggest a few million to 1.5 billion symbionts seeding the environment upon death of a tubeworm clump. In situ observations show that such clumps have rapid turnover, suggesting that release of large numbers of symbionts may ensure effective dispersal to new sites followed by active larval colonization. Moreover, release of symbionts might enable adaptations that evolve within host individuals to spread within host populations and possibly to new environments.