Monika Kędra
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monika Kędra.
Marine Biodiversity | 2011
Jan Marcin Węsławski; Michael A. Kendall; Maria Włodarska-Kowalczuk; Katrin Iken; Monika Kędra; Joanna Legeżyńska; Mikael K. Sejr
The pattern of occurrence and recent changes in the distribution of macrobenthic organisms in fjordic and coastal (nearshore) Arctic waters are reviewed and future changes are hypothesized. The biodiversity patterns observed are demonstrated to be contextual, depending on the specific region of the Arctic or habitat type. Two major areas of biotic advection are indicated (the North Atlantic Current along Scandinavia to Svalbard and the Bering Strait area) where larvae and adult animals are transported from the species-rich sub-Arctic areas to species-poor Arctic areas. In those Arctic areas, increased temperature associated with increased advection in recent decades brings more boreal-subarctic species, increasing the local biodiversity when local cold-water species may be suppressed. Two other large coastal areas are little influenced by advected waters; the Siberian shores and the coasts of the Canadian Archipelago. There, local Arctic fauna are exposed to increasing ocean temperature, decreasing salinity and a reduction in ice cover with unpredictable effect for biodiversity. One the one hand, benthic species in Arctic fjords are exposed to increased siltation (from glacial meltwater) and salinity decreases, which together may lead to habitat homogenization and a subsequent decrease in biodiversity. On the other hand, the innermost basins of Arctic fjords are able to maintain pockets of very cold, dense, saline water and thus may act as refugia for cold-water species.
Polar Biology | 2010
Monika Kędra; Maria Włodarska-Kowalczuk; Jan Marcin Węsławski
Marine benthic macrofauna communities are considered a good indicator of subtle environmental long-term changes in an ecosystem. In 1997/1998 and 2006, soft-bottom fauna of an Arctic glacial fjord Kongsfjorden was extensively sampled and major communities were identified along the fjord axis, which were related to the diminishing influence of glacial activity. Spatial patterns in community structure and species diversity were significantly different in the central basin of Kongsfjorden between periods while there was no change in the inner part of the fjord. In 1997/98, three faunal associations were distinguished with significant differences in species richness and diversity (H′) while in 2006 only two faunal associations were identified and there were no differences any more between the two formerly distinct associations in the central fjord. The increased input of Atlantic water due to a stronger West Spitsbergen Current may be the reason for unification of previous clear faunal division. The faunal association in the inner, well separated glacial part of the fjord, characterized by strong glacier influence, was protected from Atlantic water inflow and, hence, the macrobenthic fauna essentially remained unaffected. Reduced abundance of species typical for glacial bays in the central part of the fjord in 2006 may result from the decreasing effect of Blomstrandbreen glacier, strong increase of input of Atlantic water into the fjord and increased temperature of West Spitsbergen Current. Higher values of POC in 2006 than in 1998 are likely the effect of increased primary production resulting from warmer water temperatures.
Current Biology | 2015
Jørgen Berge; Malin Daase; Paul E. Renaud; William G. Ambrose; Gérald Darnis; Eva Leu; Jonathan H. Cohen; Geir Johnsen; Mark A. Moline; Finlo Cottier; Øystein Varpe; Natalia Shunatova; Piotr Balazy; Nathalie Morata; Jean-Charles Massabuau; Stig Falk-Petersen; Ksenia Kosobokova; Clara Jule Marie Hoppe; Jan Marcin Węsławski; Piotr Kuklinski; Joanna Legeżyńska; Daria Nikishina; Marine Cusa; Monika Kędra; Maria Włodarska-Kowalczuk; Daniel Vogedes; Lionel Camus; Damien Tran; Emma Michaud; Tove M. Gabrielsen
The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79°N, we present an entirely different view. Instead of an ecosystem that has entered a resting state, we document a system with high activity levels and biological interactions across most trophic levels. In some habitats, biological diversity and presence of juvenile stages were elevated in winter months compared to the more productive and sunlit periods. Ultimately, our results suggest a different perspective regarding ecosystem function that will be of importance for future environmental management and decision making, especially at a time when Arctic regions are experiencing accelerated environmental change [1].
Hydrobiologia | 2010
Leen Vandepitte; B. Vanhoorne; Alexandra Kraberg; Natalie Anisimova; Chryssanthi Antoniadou; Rita Araújo; Inka Bartsch; Beatriz Beker; Lisandro Benedetti-Cecchi; Iacopo Bertocci; Sabine Cochrane; Keith M Cooper; J.A. Craeymeersch; Epaminondas Christou; Dennis J Crisp; Salve Dahle; Marilyse De Boissier; Mario de Kluijver; Stanislav G. Denisenko; Doris De Vito; G.C.A. Duineveld; Vincent Escaravage; Dirk Fleischer; Simona Fraschetti; Adriana Giangrande; Carlos Heip; Herman Hummel; Uuszula Janas; Rolf Karez; Monika Kędra
The general aim of setting up a central database on benthos and plankton was to integrate long-, medium- and short-term datasets on marine biodiversity. Such a database makes it possible to analyse species assemblages and their changes on spatial and temporal scales across Europe. Data collation lasted from early 2007 until August 2008, during which 67 datasets were collected covering three divergent habitats (rocky shores, soft bottoms and the pelagic environment). The database contains a total of 4,525 distinct taxa, 17,117 unique sampling locations and over 45,500 collected samples, representing almost 542,000 distribution records. The database geographically covers the North Sea (221,452 distribution records), the North-East Atlantic (98,796 distribution records) and furthermore the Baltic Sea, the Arctic and the Mediterranean. Data from 1858 to 2008 are presented in the database, with the longest time-series from the Baltic Sea soft bottom benthos. Each delivered dataset was subjected to certain quality control procedures, especially on the level of taxonomy. The standardisation procedure enables pan-European analyses without the hazard of taxonomic artefacts resulting from different determination skills. A case study on rocky shore and pelagic data in different geographical regions shows a general overestimation of biodiversity when making use of data before quality control compared to the same estimations after quality control. These results prove that the contribution of a misspelled name or the use of an obsolete synonym is comparable to the introduction of a rare species, having adverse effects on further diversity calculations. The quality checked data source is now ready to test geographical and temporal hypotheses on a large scale.
Hydrobiologia | 2012
Joanna Legeżyńska; Monika Kędra; Wojciech Walkusz
Polar marine ecosystems’ functioning is known to be strongly affected by the seasonality of water column production. However, a response of benthic organisms may range from close coupling to total decoupling from seasonal variability of environmental processes, depending on a feeding strategy. In this study, we used a multi-method approach (gut content, lipid and stable isotope analyses) to examine trophic ecology and major food sources of a large set of Arctic sub-littoral amphipods, and to evaluate whether their feeding strategies undergo seasonal changes. The wide range of δ15N values (5.45-12.43‰) indicates that amphipods form a trophic continuum from primary herbivores to carnivores/scavengers. Three main feeding modes, namely scavenging/predatory, deposit-feeding/predatory and phytodetrivory, were distinguished based on the multivariate analysis of whole fatty acid profiles. Total lipid content was low in all species and included primarily short-term energy reserves of triacylglycerols. In general, amphipods feeding habits appeared to be independent of the seasonal phytodetritial pulses. Low reliance on lipid reserves and lack of major changes in the trophic strategies over time suggest that these crustaceans feed continuously, taking advantage of a variety of food sources that are available year-round in shallow polar waters.
Polar Research | 2015
Helen S. Findlay; Georgina A. Gibson; Monika Kędra; Nathalie Morata; Monika Orchowska; Alexey K. Pavlov; Marit Reigstad; Anna Silyakova; Jean-Éric Tremblay; Waldemar Walczowski; Agata Weydmann
The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006): inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.
Polar Research | 2007
Monika Kędra; Galena V. Murina
This study presents the species of Sipuncula collected in the Svalbard area (74–81 ° N and 10–35 ° E) in the summer seasons from 1996 until 2005 at depths ranging from 40 to 2553 m. The faunistic analysis of the material (1056 specimens from 251 stations) resulted in a total of six species and one subspecies, belonging to two families (Golfingiidae and Phascolionidae). One species, Golfingia vulgaris , has not been reported previously from Svalbard waters, and increases the total number of Sipuncula taxa known from Svalbard to nine. Three species dominated the collected material: G. vulgaris (53.5% of all specimens found), G. margaritacea (19.3%) and Nephasoma diaphanes diaphanes (15.5%). The study shows that compared with other northern regions, Svalbard hosts a relatively rich sipunculan fauna, which is most similar in species composition to the sipunculan fauna found in Asian Arctic waters. An easy-touse identification key to Svalbard Sipuncula species is given to aid field researchers in the identification of this often overlooked taxon.
Polar Research | 2015
Piotr Balazy; Piotr Kuklinski; Maria Włodarska-Kowalczuk; David K. A. Barnes; Monika Kędra; Joanna Legeżyńska; Jan Marcin Węsławski
Hermit crabs are important components of Arctic benthic systems, yet baseline data on their densities and distribution patterns in this rapidly changing region are still scarce. Here we compile results of numerous research expeditions to Svalbard, the Barents Sea and northern Norway that were carried out from 1979 to 2011 by the Institute of Oceanology, Polish Academy of Sciences. The diversity of hermit crabs at the northern edge of their occurrence is very low; in Svalbard waters only one species (Pagurus pubescens) was detected. Another species (P. bernhardus), found in northern mainland Norway, north of the Arctic Circle, is likely to extend its distribution northward as the climate warms. Where the two species co-occur, competition between them probably accounts for the smaller sizes and poorer quality shells used by P. pubescens. The composition of the mollusc shells inhabited by these crabs differs between northern Norway and Svalbard, reflecting local mollusc species pools. Hermit crab densities were significantly higher than previously reported (max. mean 10 ind. m−2), suggesting their increasing level of dominance in benthic communities in the studied areas. The first to report the distribution of hermit crabs among habitats, this study showed that most individuals occurred at shallow depths (5–150 m), away from glacier termini and on hard bedrock rather than on soft substrata.
Eos, Transactions American Geophysical Union | 2013
Alexandre Forest; Monika Kędra; Alexey Pavlov
Understanding and predicting how ecological and biogeochemical processes in the Arctic Ocean are affected by global changes require an integrated approach. Modifications in the Arctic system may feed back to the Earths climate, and shifts in food web functions could affect the people who depend on marine resources. Connecting information obtained along the circum-Arctic, across disciplines and time scales as well as over generations, is thus key to gaining new insights on the interactions that drive the mechanics of change (Arctic in Rapid Transition Implementation Plan; http://www.iarc.uaf.edu/ART/implementation-plan). Such a framework is needed if the linkages between atmosphere-ice-ocean forcing, land-ocean exchanges, biodiversity, and the productive capacity of the Arctic Ocean are to be properly understood.
Polar Research | 2015
Monika Kędra; Alexey K. Pavlov; Carolyn Wegner; Alexander Forest
The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART) initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.