Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monika Marędziak is active.

Publication


Featured researches published by Monika Marędziak.


Oxidative Medicine and Cellular Longevity | 2015

The Effect of Age on Osteogenic and Adipogenic Differentiation Potential of Human Adipose Derived Stromal Stem Cells (hASCs) and the Impact of Stress Factors in the Course of the Differentiation Process

Katarzyna Kornicka; Krzysztof Marycz; Krzysztof A. Tomaszewski; Monika Marędziak; Agnieszka Śmieszek

Human adipose tissue is a great source of autologous mesenchymal stem cells (hASCs), which are recognized for their vast therapeutic applications. Their ability to self-renew and differentiate into several lineages makes them a promising tool for cell-based therapies in different types of degenerative diseases. Thus it is crucial to evaluate age-related changes in hASCs, as the elderly are a group that will benefit most from their considerable potential. In this study we investigated the effect of donor age on growth kinetics, cellular senescence marker levels, and osteogenic and adipogenic potential of hASCs. It also has been known that, during life, organisms accumulate oxidative damage that negatively affects cell metabolism. Taking this into consideration, we evaluated the levels of nitric oxide, reactive oxygen species, and superoxide dismutase activity. We observed that ROS and NO increase with aging, while SOD activity is significantly reduced. Moreover cells obtained from older patients displayed senescence associated features, for example, β-galactosidase activity, enlarged morphology, and p53 protein upregulation. All of those characteristics seem to contribute to decreased proliferation potential of those cells. Our results suggest that due to aging some cellular modification may be required before applying aged cells efficiently in therapies such as tissue engineering and regenerative medicine.


Stem Cells International | 2016

The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells

Monika Marędziak; Krzysztof Marycz; Krzysztof A. Tomaszewski; Katarzyna Kornicka; Brandon Michael Henry

Tissue regeneration using human adipose derived mesenchymal stem cells (hASCs) has significant potential as a novel treatment for many degenerative bone and joint diseases. Previous studies have established that age negatively affects the proliferation status and the osteogenic and chondrogenic differentiation potential of mesenchymal stem cells. The aim of this study was to assess the age-related maintenance of physiological function and differentiation potential of hASCs in vitro. hASCs were isolated from patients of four different age groups: (1) >20 years (n = 7), (2) >50 years (n = 7), (3) >60 years (n = 7), and (4) >70 years (n = 7). The hASCs were characterized according to the number of fibroblasts colony forming unit (CFU-F), proliferation rate, population doubling time (PDT), and quantified parameters of adipogenic, chondrogenic, and osteogenic differentiation. Compared to younger cells, aged hASCs had decreased proliferation rates, decreased chondrogenic and osteogenic potential, and increased senescent features. A shift in favor of adipogenic differentiation with increased age was also observed. As many bone and joint diseases increase in prevalence with age, it is important to consider the negative influence of age on hASCs viability, proliferation status, and multilineage differentiation potential when considering the potential therapeutic applications of hASCs.


Journal of Cellular and Molecular Medicine | 2016

Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy.

Krzysztof Marycz; Katarzyna Kornicka; Monika Marędziak; Paweł Golonka; Jakub Nicpoń

Adipose‐derived mesenchymal stem cells (ASC) hold great promise in the treatment of many disorders including musculoskeletal system, cardiovascular and/or endocrine diseases. However, the cytophysiological condition of cells, used for engraftment seems to be fundamental factor that might determine the effectiveness of clinical therapy. In this study we investigated growth kinetics, senescence, accumulation of oxidative stress factors, mitochondrial biogenesis, autophagy and osteogenic differentiation potential of ASC isolated from horses suffered from equine metabolic syndrome (EMS). We demonstrated that EMS condition impairs multipotency/pluripotency in ASCs causes accumulation of reactive oxygen species and mitochondria deterioration. We found that, cytochrome c is released from mitochondria to the cytoplasm suggesting activation of intrinsic apoptotic pathway in those cells. Moreover, we observed up‐regulation of p21 and decreased ratio of Bcl‐2/BAX. Deteriorations in mitochondria structure caused alternations in osteogenic differentiation of ASCEMS resulting in their decreased proliferation rate and reduced expression of osteogenic markers BMP‐2 and collagen type I. During osteogenic differentiation of ASCEMS, we observed autophagic turnover as probably, an alternative way to generate adenosine triphosphate and amino acids required to increased protein synthesis during differentiation. Downregulation of PGC1α, PARKIN and PDK4 in differentiated ASCEMS confirmed impairments in mitochondrial biogenesis and function. Hence, application of ASCEMS into endocrinological or ortophedical practice requires further investigation and analysis in the context of safeness of their application.


Journal of Cellular and Molecular Medicine | 2017

The effects of the DNA methyltranfserases inhibitor 5‐Azacitidine on ageing, oxidative stress and DNA methylation of adipose derived stem cells

Katarzyna Kornicka; Krzysztof Marycz; Monika Marędziak; Krzysztof A. Tomaszewski; Jakub Nicpoń

Human adipose tissue is a great source of adult mesenchymal stem cells (MSCs) which are recognized from their ability to self‐renew and differentiation into multiple lineages. MSCs have promised a vast therapeutic potential in treatment many diseases including tissue injury and immune disorders. However, their regenerative potential profoundly depends on patients’ age. Age‐related deterioration of MSC is associated with cellular senescence mainly caused by increased DNA methylation status, accumulation of oxidative stress factors and mitochondria dysfunction. We found that DNA methyltransferase (DNMT) inhibitor i.e. 5‐Azacytidine (5‐AZA) reversed the aged phenotype of MSCs. Proliferation rate of cells cultured with 5‐AZA was increased while the accumulation of oxidative stress factors and DNA methylation status were decreased. Simultaneously the mRNA levels of TET proteins involved in demethylation process were elevated in those cells. Moreover, cells treated with 5‐AZA displayed reduced reactive oxygen species (ROS) accumulation, ameliorated superoxide dismutase activity and increased BCL‐2/BAX ratio in comparison to control group. Our results indicates that, treating MSCs with 5‐AZA can be justified therapeutic intervention, that can slow‐down and even reverse aged‐ related degenerative changes in those cells.


Oxidative Medicine and Cellular Longevity | 2016

Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo.

Krzysztof Marycz; Krzysztof A. Tomaszewski; Katarzyna Kornicka; Brandon Michael Henry; Sebastian Wroński; Jacek Tarasiuk; Monika Marędziak

Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs) isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine.


BioMed Research International | 2015

Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

Agnieszka Śmieszek; Aleksandra Czyrek; Katarzyna Basinska; Justyna Trynda; Aneta Skaradzińska; Anna Siudzińska; Monika Marędziak; Krzysztof Marycz

Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure.


Stem Cells International | 2015

Physical Activity Increases the Total Number of Bone-Marrow-Derived Mesenchymal Stem Cells, Enhances Their Osteogenic Potential, and Inhibits Their Adipogenic Properties.

Monika Marędziak; Agnieszka Śmieszek; Klaudia Chrząstek; Katarzyna Basinska; Krzysztof Marycz

Aging and sedentary lifestyle are common nowadays and are associated with the increasing number of chronic diseases. Thus, physical activity is recommended as one of three healthy behavior factors that play a crucial role in health prophylaxis. In the present study, we were interested whether physical activity influences the number and potential of bone-marrow-derived mesenchymal stem cells BMMSCs. In this study, four-week-old male C57Bl/6 mice were trained on a treadmill at progressive speeds over a 5-week period. Comparisons made between exercised (EX) and sedentary animal groups revealed (i) significantly higher number of MSCs in EX animals, (ii) elevated alkaline phosphatase (ALP) activity, (iii) increased level of osteopontin (OPN) and osteocalcin (OCL), and (iv) reduced marrow cavity fat. The results obtained support the thesis that EX may play a substantial role in the regeneration of mesenchymal tissues. Therefore, EX may represent a novel, nonpharmacological strategy of slowing down age-related decline of the musculoskeletal functions.


Materials Science and Engineering: C | 2017

Li+ activated nanohydroxyapatite doped with Eu3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP:Li+, Eu3+ application in theranostics

Krzysztof Marycz; Paulina Sobierajska; Agnieszka Smieszek; Monika Marędziak; Katarzyna Wiglusz; R.J. Wiglusz

Spinal cord injuries (SCI) often require simultaneous regeneration of nerve tissue and bone. Hydroxyapatites are described as bioresorbable materials with proper biocompatibility and osteoconductivity, therefore its application for spinal surgery is considered. In this paper, we present repeatable method for developing nanocrystalline calcium hydroxyapatites structurally modified with Li+ ions (nHAP:Li+). Obtained biomaterials were profoundly characterized in terms of their physicochemical properties. Moreover, we have shown that nHAP:Li+ doped with europium (Eu3+) may serve as a theranostic agent, what additionally extend its potential usage for SCI treatment. The biocompatibility of nHAP:Li+ was determined using human olfactory ensheathing cells (hOECs) and adipose tissue-derived multipotent stromal cells (hASCs). Both population of cells are eagerly applied for cell-based therapies in SCI, mainly due to their paracrine activity. The extensive in vitro studies showed that nHAP:Li+ promotes the cells proliferation, viability and cell-cell interactions. Obtained results provides encouraging approach that may have potential application in regenerative medicine and that could fulfil the promise of personalized medicine - important in SCI treatment.


Materials Science and Engineering: C | 2016

Multifunctional nanocrystalline calcium phosphates loaded with Tetracycline antibiotic combined with human adipose derived mesenchymal stromal stem cells (hASCs).

Krzysztof Marycz; Robert Pazik; Katarzyna Zawisza; Katarzyna Wiglusz; Monika Marędziak; Paulina Sobierajska; R.J. Wiglusz

Osteoconductive drug delivery system composed of nanocrystalline calcium phosphates (Ca10(PO4)6(OH)2/β-Ca3(PO4)2) co-doped with Yb(3+)/Er(3+) ions loaded with Tetracycline antibiotic (TC) was developed. Their effect on human adipose derived mesenchymal stromal stem cells (hASCs) as a potential reconstructive biomaterial for bone tissue regeneration was studied. The XRD and TEM measurements were used in order to determine the crystal structure and morphology of the final products. The characteristics of nanocomposites with the TC and hASCs as potential regenerative materials as well as the antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 25923 as a model of the Gram-positive bacteria, Escherichia coli ATCC 8739 of the Gram-negative bacteria, were shown. These combinations can be a promising material for theranostic due to its regenerative, antimicrobial and fluorescent properties.


BioMed Research International | 2015

The Osteogenic Properties of Multipotent Mesenchymal Stromal Cells in Cultures on TiO2 Sol-Gel-Derived Biomaterial

Krzysztof Marycz; Agnieszka Śmieszek; Jakub Grzesiak; Anna Siudzińska; Monika Marędziak; Anna Donesz-Sikorska; Justyna Krzak

The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs) and bone marrow multipotent stromal cells (BMSCs) cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCL). Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX). Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine.

Collaboration


Dive into the Monika Marędziak's collaboration.

Top Co-Authors

Avatar

Krzysztof Marycz

Wroclaw University of Environmental and Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Śmieszek

Wroclaw University of Environmental and Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Krzysztof A. Tomaszewski

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Daniel Lewandowski

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Kornicka

Wroclaw University of Environmental and Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jakub Grzesiak

Wroclaw University of Environmental and Life Sciences

View shared research outputs
Top Co-Authors

Avatar

R.J. Wiglusz

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Brandon Michael Henry

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Emilia Zachanowicz

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Wiglusz

Wrocław Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge