Monika Pućko
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monika Pućko.
Geophysical Research Letters | 2009
David G. Barber; R. J. Galley; Matthew G. Asplin; Roger De Abreu; Kerri-Ann Warner; Monika Pućko; Mukesh Gupta; Simon Prinsenberg; Stéphane Julien
[1] In September 2009 we observed a much different sea icescape in the Southern Beaufort Sea than anticipated, based on remotely sensed products. Radarsat derived ice charts predicted 7 to 9 tenths multi-year (MY) or thick first-year (FY) sea ice throughout most of the Southern Beaufort Sea in the deep water of the Canada Basin. In situ observations found heavily decayed, very small remnant MY and FY floes interspersed with new ice between floes, in melt ponds, thaw holes and growing over negative freeboard older ice. This icescape contained approximately 25% open water, predominantly distributed in between floes or in thaw holes connected to the ocean below. Although this rotten ice regime was quite different that the expected MY regime in terms of ice volume and strength, their near-surface physical properties were found to be sufficiently alike that their radiometric and scattering characteristics were almost identical.
Environmental Science & Technology | 2011
Fiona Wong; Liisa M. Jantunen; Monika Pućko; Tim Papakyriakou; Ralf M. Staebler; Gary A. Stern; Terry F. Bidleman
Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg L(-1)) were as follows: α-hexachlorocyclohexane (α-HCH) 465-1013, γ-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg m(-3)) were as follows: α-HCH 7.5-48, γ-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4 - 39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of α-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The α-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic α-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng m(-2) d(-1)) were as follows: α-HCH 6.8 ± 3.2 (2.7-13), γ-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng m(-2) d(-1) (-1.6 to 2.0).
Environmental Science & Technology | 2016
Roxana Sühring; Miriam Diamond; Martin Scheringer; Fiona Wong; Monika Pućko; Gary A. Stern; Alexis Burt; Hayley Hung; Philip Fellin; Henrik Li; Liisa M. Jantunen
Fourteen organophosphate esters (OPEs) were measured in the filter fraction of 117 active air samples from yearly ship-based sampling campaigns (2007-2013) and two land-based stations in the Canadian Arctic, to assess trends and long-range transport potential of OPEs. Four OPEs were detected in up to 97% of the samples, seven in 50% or less of the samples, and three were not detected. Median concentrations of ∑OPEs were 237 and 50 pg m(-3) for ship- and land-based samples, respectively. Individual median concentrations ranged from below detection to 119 pg m(-3) for ethanol, 2-chloro-, phosphate (3:1) (TCEP). High concentrations of up to 2340 pg m(-3) were observed for Tri-n-butyl phosphate (TnBP) at a land-based sampling location in Resolute Bay from 2012, whereas it was only detected in one ship-based sample at a concentration below 100 pg m(-3). Concentrations of halogenated OPEs seemed to be driven by river discharge from the Nelson and Churchill Rivers (Manitoba) and Churchill River and Lake Melville (Newfoundland and Labrador). In contrast, nonhalogenated OPE concentrations appeared to have diffuse sources or local sources close to the land-based sampling stations. Triphenyl phosphate (TPhP) showed an apparent temporal trend with a doubling-time of 11 months (p = 0.044). The results emphasize the increasing relevance of halogenated and nonhalogenated OPEs as contaminants in the Arctic.
Journal of Geophysical Research | 2014
David G. Barber; Jens K. Ehn; Monika Pućko; Søren Rysgaard; Jody W. Deming; Jeff S. Bowman; Tim Papakyriakou; R. J. Galley; D. H. Søgaard
Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg−1 in frost flowers and 1061 µmol kg−1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.
Atmosphere-ocean | 2010
Monika Pućko; Gary A. Stern; David G. Barber; Robie W. Macdonald; B. Rosenberg
Abstract We present evidence that both geophysical and thermodynamic conditions in sea ice are important in understanding pathways of accumulation or rejection of hexachlorocyclohexanes (HCHs). α‐ and γ‐HCH concentrations and α‐HCH enantiomer fractions have been measured in various ice classes and ages from the Canadian High Arctic. Mean α‐HCH concentrations reached 0.642 ± 0.046 ng L–1 in new and young ice (<30 cm), 0.261 ±0.015 ng L–1 in the first‐year ice (30–200 cm) and 0.208 ±0.045 in the old ice (>200 cm). Mean γ‐HCH concentrations were 0.066 ± 0.006 ng L–1 in new and young ice, 0.040 ±0.002 ng L–1 in the first‐year ice and 0.040 ±0.007 ng L–1 in the old ice. In general, α‐HCH concentrations and vertical distributions were highly dependent on the initial entrapment of brine and the subsequent desalination process. γ‐HCH levels and distribution in sea ice were not as clearly related to ice formation processes. During the year, first‐year ice progressed from freezing (accumulation) to melting (ablation). Relations between the geophysical state of the sea ice and the vertical distribution of HCHs are described as ice passes through these thermodynamic states. In melting ice, which corresponded to the algal bloom period, the influence of biological processes within the bottom part of the ice on HCH concentrations and α‐HCH enantiomer fraction is discussed using both univariate and multivariate approaches.
Climatic Change | 2012
David G. Barber; Matthew G. Asplin; Tim Papakyriakou; Lisa A. Miller; Brent Else; John Iacozza; Christopher John Mundy; M. Gosslin; Natalie C Asselin; Steve Ferguson; Jennifer V. Lukovich; Gary A. Stern; Ashley Gaden; Monika Pućko; Nicolas-Xavier Geilfus; Fei Wang
Change and variability in the timing and magnitude of sea ice geophysical and thermodynamic state have consequences on many aspects of the arctic marine system. The changes in both the geophysical and thermodynamic state, and in particular the timing of the development of these states, have consequences throughout the marine system. In this paper we review the ‘consequences’ of change in sea ice state on primary productivity, marine mammal habitats, and sea ice as a medium for storage and transport of contaminants and carbon exchange across the ocean-sea-ice-atmosphere interface based upon results from the International Polar Year. Pertinent results include: 1) conditions along ice edges can bring deep nutrient-rich ‘pacific’ waters into nutrient-poor surface waters along the arctic coast, affecting local food webs; 2) both sea ice thermodynamic and dynamic processes ultimately affect ringed seal/polar bear habitats by controlling the timing, location and amount of surface deformation required for ringed seal and polar bear preferred habitat 3) the ice edges bordering open waters of flaw leads are areas of high biological production and are observed to be important beluga habitat. 4) exchange of climate-active gases, including CO2, is extremely active in sea ice environments, and the overall question of whether the Arctic Ocean is (or will be) a source or sink for CO2 will be dependent on the balance of competing climate-change feedbacks.
Environmental Science & Technology | 2010
Monika Pućko; G. A. Stern; Robie W. Macdonald; David G. Barber
We used holes augered partially into first-year sea ice (sumps) to determine α- and γ-HCH concentrations in sea-ice brine. The overwintering of the CCGS Amundsen in the Canadian western Arctic, as part of the Circumpolar Flaw Lead (CFL) System Study, provided the circumstances to allow brine to accumulate in sumps sufficiently to test the methodology. We show, for the first time, that as much as 50% of total HCHs in seawater can become entrapped within the ice crystal matrix. On average, in the winter first-year sea ice HCH brine concentrations reached 4.013 ± 0.307 ng/L and 0.423 ± 0.013 ng/L for the α- and γ-isomer, respectively. In the spring, HCHs decreased gradually with time, with increasing brine volume fraction and decreasing brine salinity. These decreasing concentrations could be accounted for by both the dilution with the ice crystal matrix and under-ice seawater. We propose that the former process plays a more significant role considering brine volume fractions calculated in this study were below 20%. Levels of HCHs in the brine exceed under-ice water concentrations by approximately a factor of 3, a circumstance suggesting that the brine ecosystem has been, and continues to be, the most exposed to HCHs.
Environmental Science & Technology | 2014
Monika Pućko; Alexis Burt; Wojciech Walkusz; Feiyue Wang; Robie W. Macdonald; Søren Rysgaard; David G. Barber; J.-É. Tremblay; G. A. Stern
We show 2008 seasonal trends of total and monomethyl mercury (THg and MeHg, respectively) in herbivorous (Calanus hyperboreus) and predatory (Chaetognaths, Paraeuchaeta glacialis, and Themisto abyssorum) zooplankton species from the Canadian High Arctic (Amundsen Gulf and the Canadian Beaufort Sea) in relation to ambient seawater and diet. It has recently been postulated that the Arctic marine environment may be exceptionally vulnerable to toxic MeHg contamination through postdepositional processes leading to mercury transformation and methylation. Here, we show that C. hyperboreus plays a hitherto unrecognized central role in mercury transformation while, itself, not manifesting inordinately high levels of THg compared to its prey (pelagic particulate organic matter (POM)). Calanus hyperboreus shifts Hg from mainly inorganic forms in pelagic POM (>99.5%) or ambient seawater (>90%) to primarily organic forms (>50%) in their tissue. We calculate that annual dietary intake of MeHg could supply only ∼30% of the MeHg body burden in C. hyperboreus and, thus, transformation within the species, perhaps mediated by gut microbial communities, or bioconcentration from ambient seawater likely play overriding roles. Seasonal THg trends in C. hyperboreus are variable and directly controlled by species-specific physiology, e.g., egg laying and grazing. Zooplankton that prey on species such as C. hyperboreus provide a further biomagnification of MeHg and reflect seasonal trends observed in their prey.
Environmental Science & Technology | 2012
Monika Pućko; G. A. Stern; David G. Barber; Robie W. Macdonald; K.-A. Warner; C. Fuchs
During the summer of 2009, we sampled 14 partially refrozen melt ponds and the top 1 m of old ice in the pond vicinity for α-hexachlorocyclohexane (α-HCH) concentrations and enantiomer fractions (EFs) in the Beaufort Sea. α-HCH concentrations were 3 - 9 times higher in melt ponds than in the old ice. We identify two routes of α-HCH enrichment in the ice over the summer. First, atmospheric gas deposition results in an increase of α-HCH concentration from 0.07 ± 0.02 ng/L (old ice) to 0.34 ± 0.08 ng/L, or ~20% less than the atmosphere-water equilibrium partitioning concentration (0.43 ng/L). Second, late-season ice permeability and/or complete ice thawing at the bottom of ponds permit α-HCH rich seawater (~0.88 ng/L) to replenish pond water, bringing concentrations up to 0.75 ± 0.06 ng/L. α-HCH pond enrichment may lead to substantial concentration patchiness in old ice floes, and changed exposures to biota as the surface meltwater eventually reaches the ocean through various drainage mechanisms. Melt pond concentrations of α-HCH were relatively high prior to the late 1980-s, with a Melt pond Enrichment Factor >1 (MEF; a ratio of concentration in surface meltwater to surface seawater), providing for the potential of increased biological exposures.
Environmental Science & Technology | 2013
Monika Pućko; Wojciech Walkusz; Robie W. Macdonald; David G. Barber; C. Fuchs; G. A. Stern
Like most zooplankton, Calanus hyperboreus undergoes seasonal migration spending late spring and summer grazing at the surface and the rest of the year in diapause at depth. As a result, in the Arctic Ocean this copepod resides for part of the year in the hexachlorocyclohexane (HCH) enriched surface water and for part of the year at depth where HCH undergoes significant microbial degradation resulting in far lower concentrations (~3 times for α-HCH). We collected C. hyperboreus from summer and winter from the Amundsen Gulf and measured their α-HCH concentrations, enantiomeric compositions, and bioaccumulation factors (BAFs) to investigate how this copepod responds to the change in exposure to α-HCH. C. hyperboreus collected in winter were also cultured for 5 weeks under surface water conditions without feeding to investigate bioconcentration dynamics following spring ascent. Concentration of α-HCH was 2-3 times higher in individuals from the summer than those from the winter. Log BAF from the summer (feeding period) does not exceed log BCF (bioconcentration factor) from the culturing experiment (no feeding) suggesting that α-HCH concentration in C. hyperboreus is maintained through equilibration rather than feeding. After the spring ascent from deep waters, C. hyperboreus approach equilibrium partitioning with the higher surface water concentrations of α-HCH within 3-4 weeks with about 60% of bioconcentration taking place in the first week. The C. hyperboreus α-HCH chiral signature also reflects ambient seawater and can therefore be used as a determinant of residence depth. Even though a single cycle of seasonal migration does not result in a significant redistribution of α-HCH in the water column, this process could have a significant cumulative effect over longer time scales with particular local importance where the zooplankton biomass is high and the ocean depth is great enough to provide substantial vertical concentration gradients.