Monika Raab
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monika Raab.
Immunity | 1997
Monika Raab; Antonio J. da Silva; Paul R. Findell; Christopher E. Rudd
T cell activation stimulates p56(lck), p59(fyn), ZAP-70, Vav-SLP-76 binding, and IL-2 transcription. Major questions concern the tyrosine-kinase and relevant site(s) needed for Vav-SLP-76 complex formation and its role in IL-2 production. Here, we show that of the three kinases, only ZAP-70 phosphorylates SLP-76 at specific sites that allow Vav SH2 domain binding. Therefore, while p56(lck) regulates proximal events, ZAP-70 acts downstream on targets such as SLP-76. We also show by in vitro and in vivo analysis that two SLP-76 pYESP motifs (Y113 and Y128) mediate binding, the first being more efficient. A third pYEPP motif (Y145) failed to bind. Finally, TCR zeta CD3 ligation of T cell hybridoma DC27.10 induces IL-2 production without detectable Vav-SLP-76 binding. Therefore, despite effects of Vav-SLP-76 on IL-2 expression, Vav-SLP-76 binding per se is not essential for IL-2 production in all T cells.
Immunity | 1995
Yun-Cai Cai; Daniel Cefai; Helga Schneider; Monika Raab; Nasrin Nabavi; Christopher E. Rudd
CD28 costimulatory signals are required for lymphokine production and T cell proliferation. CD28 signaling recruits the intracellular proteins PI 3-kinase, ITK, and GRB-2/SOS. PI 3-kinase and GRB-2/SOS bind the CD28 cytoplasmic pYMNM motif via SH2 domains. We generated CD28 pYMNM mutants and found that Y191 mutation (Y191CD28F) disrupted both PI 3-kinase and GRB-2 binding, while M194 mutation (M194CD28C) disrupted only PI 3-kinase binding. Both mutants still bound ITK. We have assessed the ability of these selective mutants to support IL-2 production upon TCR zeta/CD3 ligation in the presence of CHO-CD86 (B7-2) cells. Both Y191CD28F and M194CD28C mutants failed to generate IL-2. These data directly implicate PI 3-kinase in CD28-mediated costimulation leading to IL-2 secretion. Wortmannin, an inhibitor of PI 3-kinase, induced cell apoptosis and as such was unsuitable for use in this study.
Immunity | 2001
Monika Raab; Stefan Pfister; Christopher E. Rudd
Since CD28 provides cosignals in T cell responses, a key question is whether the coreceptor operates exclusively via TCRzeta/CD3 or also operates as an independent signaling unit. In this study, we show that CD28 can cooperate with VAV/SLP-76 adaptors to upregulate interleukin 2/4 transcription independently of TCR ligation. CD28 signaling is dependent on VAV/SLP-76 complex formation and induces membrane localization of these complexes. CD28-VAV/SLP-76 also functions in nonlymphoid cells to promote nuclear entry of NFAT, indicating that these adaptors are the only lymphoid components needed for this pathway. Further downstream, CD28-VAV/SLP-76 synergizes with Rac1 and causes F-actin remodelling proximal to receptor. Autonomous CD28 signaling may account for the distinct nature of the second signal and in trans amplification of T cell responses.
Journal of Biological Chemistry | 1999
Monika Raab; Hyun Gu Kang; Antonio J. da Silva; Xiaochun Zhu; Christopher E. Rudd
Protein-tyrosine kinases p56Lck, SYK, and ZAP-70 and downstream adaptors LAT and SLP-76 have been implicated as essential components in T-cell activation. Another lymphoid-specific adaptor FYB/SLAP has also been identified as a predominant binding partner of SLP-76 and the Src kinase FYN-T, although its role in the activation process has been unclear. In this study, we demonstrate that FYN-T selectively phosphorylates FYB providing a template for the recruitment of FYN-T and SLP-76 SH2 domain binding. This interaction is unusual in its distinct cytoplasmic localization and its long term stable kinetics of phosphorylation. Furthermore, we demonstrate for the first time that the co-expression of all three components of the FYN-T-FYB-SLP-76 matrix can synergistically up-regulate T-cell receptor-driven interleukin 2 transcription activity. These findings document the existence of a T-cell receptor-regulated FYN-T-FYB pathway that interfaces with the adaptor SLP-76 and up-regulates lymphokine production in T-cells.
Current Biology | 1999
John F. Timms; Kenneth D. Swanson; Anne Marie-Cardine; Monika Raab; Christopher E. Rudd; Burkhart Schraven; Benjamin G. Neel
Inhibitory immunoreceptors downregulate signaling by recruiting Src homology 2 (SH2) domain-containing tyrosine and/or lipid phosphatases to activating receptor complexes [1]. There are indications that some inhibitory receptors might also perform other functions [2] [3]. In adherent macrophages, two inhibitory receptors, SHPS-1 and PIR-B, are the major proteins binding to the tyrosine phosphatase SHP-1. SHPS-1 also associates with two tyrosine-phosphorylated proteins (pp55 and pp130) and a protein tyrosine kinase [4]. Here, we have identified pp55 and pp130 as the adaptor molecules SKAP55hom/R (Src-kinase-associated protein of 55 kDa homologue) and FYB/SLAP-130 (Fyn-binding protein/SLP-76-associated protein of 130 kDa), respectively, and the tyrosine kinase activity as PYK2. Two distinct SHPS-1 complexes were formed, one containing SKAP55hom/R and FYB/SLAP-130, and the other containing PYK2. Recruitment of FYB/SLAP-130 to SHPS-1 required SKAP55hom/R, whereas PYK2 associated with SHPS-1 independently. Formation of both complexes was independent of SHP-1 and tyrosine phosphorylation of SHPS-1. Finally, tyrosine phosphorylation of members of the SHPS-1 complexes was regulated by integrin-mediated adhesion. Thus, SHPS-1 provides a scaffold for the assembly of multi-protein complexes that might both transmit adhesion-regulated signals and help terminate such signals through SHP-1-directed dephosphorylation. Other inhibitory immunoreceptors might have similar scaffold-like functions.
Journal of Experimental Medicine | 2004
Hongyan Wang; Fiona E. McCann; John D. Gordan; Xiang Wu; Monika Raab; Talat H. Malik; Daniel M. Davis; Christopher E. Rudd
T cell–APC conjugation as mediated by leukocyte function-associated antigen-1 (LFA-1)–intercellular adhesion molecule (ICAM)-1 binding is followed by formation of the supramolecular activation cluster (SMAC) at the immunological synapse. The intracellular processes that regulate SMAC formation and its influence on T cell function are important questions to be addressed. Here, using a mutational approach, we demonstrate that binding of adaptor adhesion and degranulation promoting adaptor protein (ADAP) to SLP-76 differentially regulates peripheral SMAC (pSMAC) formation relative to conjugation. Although mutation of the YDDV sites (termed M12) disrupted SLP-76 SH2 domain binding and prevented the ability of ADAP to increase conjugation and LFA-1 clustering, M12 acted selectively as a dominant negative (DN) inhibitor of pSMAC formation, an effect that was paralleled by a DN effect on interleukin-2 production. ADAP also colocalized with LFA-1 at the immunological synapse. Our findings identify ADAP–SLP-76 binding as a signaling event that differentially regulates SMAC formation, and support a role for SMAC formation in T cell cytokine production.
Molecular and Cellular Biology | 1994
Monika Raab; Masahiro Yamamoto; Christopher E. Rudd
CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.
Biochimica et Biophysica Acta | 1993
Christopher E. Rudd; Ottmar Janssen; K. V S Prasad; Monika Raab; Antonio J. da Silva; Janice C. Telfer; Masahiro Yamamoto
The CD4-p56lck and CD8-p56lck complexes have served as a paradym for an expanding number of interactions between src-family members (p56lck, p59fyn, p56lyn, p55blk) and surface receptors. These interactions implicate src-related kinases in the regulation of a variety of intracellular events, from lymphokine production and cytotoxicity to the expression of specific nuclear binding proteins. Different molecular mechanisms appear to have evolved to facilitate the receptor-kinase interactions, including the use of N-terminal regions, SH2 regions and kinase domains. Variation exists in stoichiometry, affinity and the nature of signals generated by these complexes in cells. The CD4-p56lck complex differs from receptor-tyrosine kinases in a number of important ways, including mechanisms of kinase domain regulation and recruitment of substrates such as PI 3-kinase. Furthermore, they may have a special affinity for receptor-substrates such as the TcR zeta, MB1/B29 or CD5 receptors, and act to recruit other SH2-carrying proteins, such as ZAP-70 to the receptor complexes. Receptor-src kinase interactions represent the first step in a cascade of intracellular events within the protein-tyrosine kinase/phosphatase cascade.
Molecular and Cellular Biology | 2010
Yves Matthess; Monika Raab; Mourad Sanhaji; Inna N. Lavrik; Klaus Strebhardt
ABSTRACT Caspase activation is a hallmark of apoptosis. However, the molecular mechanisms underlying the regulation of caspase-8 activation within the extrinsic death pathway are not well understood. In this study, we demonstrate that procaspase-8 is phosphorylated in mitotic cells by Cdk1/cyclin B1 on Ser-387, which is located at the N terminus of the catalytic subunit p10. This phosphorylation of procaspase-8 on Ser-387 occurs in cancer cell lines, as well as in primary breast tissues and lymphocytes. Furthermore, RNA interference-mediated silencing of cyclin B1 or treatment with the Cdk1 inhibitor RO-3306 enhances the Fas-mediated activation and processing of procaspase-8 in mitotic cells. A nonphosphorylatable procaspase-8 (S387A) facilitates Fas-induced apoptosis during mitosis. Our findings suggest that Cdk1/cyclin B1 activity shields human cells against extrinsic death stimuli and unravel the molecular details of the cross talk between cell cycle and extrinsic apoptotic pathways. Finally, this new mechanism may also contribute to tumorigenesis.
Cell Cycle | 2007
Bernd Martin; Kai Kleiber; Viktor Wixler; Monika Raab; Brigitte Zimmer; M. Kaufmann; Klaus Strebhardt
The transcriptional cofactor FHL2 interacts with a broad variety of transcription factors and its expression is often deregulated in various types of cancer. Here we analyzed for the first time the molecular function of FHL2 in breast cancer. FHL2 is overexpressed in almost all human mammary carcinoma samples tested but not in normal breast tissues and only low levels of FHL2 expression were present in four premalignant ductal carcinoma in situ (DCIS). Cell cycle analysis revealed an upregulation of endogenous FHL2 towards G2/M in MDA-MB 231 cells and an accelerated G2/M transition when FHL2 expression was suppressed in these cells. In search for G2/M specific target genes regulated by FHL2, we found that expression of the cell cycle inhibitor p21Cip1/Waf1 (hereafter p21) is dependent on FHL2 in MDA-MB 231 breast cancer cells. Downregulation of FHL2 by shRNA abrogated the cell cycle dependent upregulation of p21 as well as the induction of p21 in response to treatment with the DNA damaging agent doxorubicin. FHL2-dependent p21 expression occurs in a p53-independent manner and p21 expression can be downregulated by specific inhibition of mitogen-activated protein kinases (MAPKs), implicating an involvement of MAPK signaling in this regulation. Analysis of FHL2 contribution to the MAPK signaling identified FHL2 as an important downstream effector of MAPKs in breast cancer cells, capable of transactivating endogenous AP1 target genes as well as AP1 dependent reporter genes. Finally, downregulation of FHL2 reduces the ability of MDA-MB 231 cells to form colonies in soft agar, while FHL2 overexpression enhances colony formation of breast cancer cells. Thus, our findings indicate that overexpression of the transcriptional cofactor FHL2 contributes to breast cancer development by mediating transcriptional activation of MAPK target genes known to be involved in cancer progression, such as p21.