Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monika Riederer is active.

Publication


Featured researches published by Monika Riederer.


Journal of Biological Chemistry | 2002

Hormone-sensitive lipase deficiency in mice changes the plasma lipid profile by affecting the tissue-specific expression pattern of lipoprotein lipase in adipose tissue and muscle.

Guenter Haemmerle; Robert Zimmermann; Juliane G. Strauss; Dagmar Kratky; Monika Riederer; Gabriele Knipping; Rudolf Zechner

Hormone-sensitive lipase (HSL) is believed to play an important role in the mobilization of fatty acids from triglycerides (TG), diglycerides, and cholesteryl esters in various tissues. Because HSL-mediated lipolysis of TG in adipose tissue (AT) directly feeds non-esterified fatty acids (NEFA) into the vascular system, the enzyme is expected to affect many metabolic processes including the metabolism of plasma lipids and lipoproteins. In the present study we examined these metabolic changes in induced mutant mouse lines that lack HSL expression (HSL-ko mice). During fasting, when HSL is normally strongly induced in AT, HSL-ko animals exhibited markedly decreased plasma concentrations of NEFA (−40%) and TG (−63%), whereas total cholesterol and HDL cholesterol levels were increased (+34%). Except for the increased HDL cholesterol concentrations, these differences were not observed in fed animals, in which HSL activity is generally low. Decreased plasma TG levels in fasted HSL-ko mice were mainly caused by decreased hepatic very low density lipid lipoprotein (VLDL) synthesis as a result of decreased NEFA transport from the periphery to the liver. Reduced NEFA transport was also indicated by a depletion of hepatic TG stores (−90%) and strongly decreased ketone body concentrations in plasma (−80%). Decreased plasma NEFA and TG levels in fasted HSL-ko mice were associated with increased fractional catabolic rates of VLDL-TG and an induction of the tissue-specific lipoprotein lipase (LPL) activity in cardiac muscle, skeletal muscle, and white AT. In brown AT, LPL activity was decreased. Both increased VLDL fractional catabolic rates and increased LPL activity in muscle were unable to provide the heart with sufficient NEFA, which led to decreased tissue TG levels in cardiac muscle. Our results demonstrate that HSL deficiency markedly affects the metabolism of TG-rich lipoproteins by the coordinate down-regulation of VLDL synthesis and up-regulation of LPL in muscle and white adipose tissue. These changes result in an “anti-atherogenic” lipoprotein profile.


Journal of Biological Chemistry | 2012

Inhibition of Autophagy Rescues Palmitic Acid-induced Necroptosis of Endothelial Cells

Muhammad Jadoon Khan; Muhammad Rizwan Alam; Markus Waldeck-Weiermair; Felix Karsten; Lukas N. Groschner; Monika Riederer; Seth Hallström; Patrick Rockenfeller; Viktoria Konya; Akos Heinemann; Frank Madeo; Wolfgang F. Graier; Roland Malli

Background: Accumulation of palmitic acid in endothelial cells induces cellular dysfunction and death. Results: Palmitic acid triggers Ca2+-dependent autophagy, which results in programmed necrotic death (necroptosis) of endothelial cells. Conclusion: Autophagy promotes lipotoxic signaling of palmitic acid in endothelial cells leading to necroptosis. Significance: Showing a new molecular mechanism of palmitic acid-induced cytotoxicity may reveal novel strategies in the treatment of diseases related to lipid overload. Accumulation of palmitic acid (PA) in cells from nonadipose tissues is known to induce lipotoxicity resulting in cellular dysfunction and death. The exact molecular pathways of PA-induced cell death are still mysterious. Here, we show that PA triggers autophagy, which did not counteract but in contrast promoted endothelial cell death. The PA-induced cell death was predominantly necrotic as indicated by annexin V and propidium iodide (PI) staining, absence of caspase activity, low levels of DNA hypoploidy, and an early ATP depletion. In addition PA induced a strong elevation of mRNA levels of ubiquitin carboxyl-terminal hydrolase (CYLD), a known mediator of necroptosis. Moreover, siRNA-mediated knockdown of CYLD significantly antagonized PA-induced necrosis of endothelial cells. In contrast, inhibition and knockdown of receptor interacting protein kinase 1 (RIPK1) had no effect on PA-induced necrosis, indicating the induction of a CYLD-dependent but RIPK1-independent cell death pathway. PA was recognized as a strong and early inducer of autophagy. The inhibition of autophagy by both pharmacological inhibitors and genetic knockdown of the autophagy-specific genes, vacuolar protein sorting 34 (VPS34), and autophagy-related protein 7 (ATG7), could rescue the PA-induced death of endothelial cells. Moreover, the initiation of autophagy and cell death by PA was reduced in endothelial cells loaded with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-(acetoxymethyl) ester (BAPTA-AM), indicating that Ca2+ triggers the fatal signaling of PA. In summary, we introduce an unexpected mechanism of lipotoxicity in endothelial cells and provide several novel strategies to counteract the lipotoxic signaling of PA.


Journal of Lipid Research | 2010

Acyl chain-dependent effect of lysophosphatidylcholine on endothelial prostacyclin production

Monika Riederer; Pauli J. Ojala; Andelko Hrzenjak; Wolfgang F. Graier; Roland Malli; Michaela Tritscher; Martin Hermansson; Bernhard Watzer; Horst Schweer; Gernot Desoye; Akos Heinemann; Saša Frank

Previously we identified palmitoyl-lysophosphatidylcholine (16:0 LPC), linoleoyl-LPC (18:2 LPC), arachidonoyl-LPC (20:4 LPC), and oleoyl-LPC (18:1 LPC) as the most prominent LPC species generated by the action of endothelial lipase (EL) on high-density lipoprotein. In the present study, the impact of those LPC on prostacyclin (PGI2) production was examined in vitro in primary human aortic endothelial cells (HAEC) and in vivo in mice. Although 18:2 LPC was inactive, 16:0, 18:1, and 20:4 LPC induced PGI2 production in HAEC by 1.4-, 3-, and 8.3-fold, respectively. LPC-elicited 6-keto PGF1α formation depended on both cyclooxygenase (COX)-1 and COX-2 and on the activity of cytosolic phospholipase type IVA (cPLA2). The LPC-induced, cPLA2-dependent 14C-arachidonic acid (AA) release was increased 4.5-fold with 16:0, 2-fold with 18:1, and 2.7-fold with 20:4 LPC, respectively, and related to the ability of LPC to increase cytosolic Ca2+ concentration. In vivo, LPC increased 6-keto PGF1α concentration in mouse plasma with a similar order of potency as found in HAEC. Our results indicate that the tested LPC species are capable of eliciting production of PGI2, whereby the efficacy and the relative contribution of underlying mechanisms are strongly related to acyl-chain length and degree of saturation.


Free Radical Biology and Medicine | 2012

Docosahexaenoic acid-induced unfolded protein response, cell cycle arrest, and apoptosis in vascular smooth muscle cells are triggered by Ca2+-dependent induction of oxidative stress

Slaven Crnkovic; Monika Riederer; Margarete Lechleitner; Seth Hallström; Roland Malli; Wolfgang F. Graier; Jörg Lindenmann; Helmut Popper; Horst Olschewski; Andrea Olschewski; Saša Frank

Proliferation of vascular smooth muscle cells is a characteristic of pathological vascular remodeling and represents a significant therapeutic challenge in several cardiovascular diseases. Docosahexaenoic acid (DHA), a member of the n-3 polyunsaturated fatty acids, was shown to inhibit proliferation of numerous cell types, implicating several different mechanisms. In this study we examined the molecular events underlying the inhibitory effects of DHA on proliferation of primary human smooth muscle cells isolated from small pulmonary artery (hPASMCs). DHA concentration-dependently inhibited hPASMC proliferation, induced G1 cell cycle arrest, and decreased cyclin D1 protein expression. DHA activated the unfolded protein response (UPR), evidenced by increased mRNA expression of HSPA5, increased phosphorylation of eukaryotic initiation factor 2α, and splicing of X-box binding protein 1. DHA altered cellular lipid composition and led to increased reactive oxygen species (ROS) production. DHA-induced ROS were dependent on both intracellular Ca2+ release and entry of extracellular Ca2+. Overall cellular ROS and mitochondrial ROS were decreased by RU360, a specific inhibitor of mitochondrial Ca2+ uptake. DHA-induced mitochondrial dysfunction was evidenced by decreased mitochondrial membrane potential and decreased cellular ATP content. DHA triggered apoptosis as found by increased numbers of cleaved caspase-3- and TUNEL-positive cells. The free radical scavenger Tempol counteracted DHA-induced ROS, cell cycle arrest, induction of UPR, and apoptosis. We conclude that Ca2+-dependent oxidative stress is the central and initial event responsible for induction of UPR, cell cycle arrest, and apoptosis in DHA-treated hPASMCs.


Atherosclerosis | 2011

Endothelial lipase (EL) and EL-generated lysophosphatidylcholines promote IL-8 expression in endothelial cells

Monika Riederer; Margarete Lechleitner; Andelko Hrzenjak; Harald Koefeler; Gernot Desoye; Akos Heinemann; Saša Frank

Objective Previously we identified palmitoyl-lysophosphatidylcholine (LPC 16:0), as well as linoleoyl-, arachidonoyl- and oleoyl-LPC (LPC 18:2, 20:4 and 18:1) as the most prominent LPC species generated by the action of endothelial lipase (EL) on high-density lipoprotein (HDL). In the present study, the impact of EL and EL-generated LPC on interleukin-8 (IL-8) synthesis was examined in vitro in primary human aortic endothelial cells (HAEC) and in mice. Methods and Results Adenovirus-mediated overexpression of the catalytically active EL, but not its inactive mutant, increased endothelial synthesis of IL-8 mRNA and protein in a time- and HDL-concentration-dependent manner. While LPC 18:2 was inactive, LPC 16:0, 18:1 and 20:4 promoted IL-8 mRNA- and protein-synthesis, differing in potencies and kinetics. The effects of all tested LPC on IL-8 synthesis were completely abrogated by addition of BSA and chelation of intracellular Ca2+. Underlying signaling pathways also included NFkB, p38-MAPK, ERK, PKC and PKA. In mice, adenovirus-mediated overexpression of EL caused an elevation in the plasma levels of MIP-2 (murine IL-8 analogue) accompanied by a markedly increased plasma LPC/PC ratio. Intravenously injected LPC also raised MIP-2 plasma concentration, however to a lesser extent than EL overexpression. Conclusion Our results indicate that EL and EL-generated LPC, except of LPC 18:2, promote endothelial IL-8 synthesis, with different efficacy and kinetics, related to acyl-chain length and degree of saturation. Accordingly, due to its capacity to modulate the availability of the pro-inflammatory and pro-adhesive chemokine IL-8, EL should be considered an important player in the development of atherosclerosis.


Atherosclerosis | 2012

Acyl chain-dependent effect of lysophosphatidylcholine on cyclooxygenase (COX)-2 expression in endothelial cells

Lada Brkić; Monika Riederer; Wolfgang F. Graier; Roland Malli; Saša Frank

Objective Previously we identified palmitoyl-, oleoyl- linoleoyl-, and arachidonoyl-lysophosph-atidylcholine (LPC 16:0, 18:1, 18:2 and 20:4) as the most prominent LPC species generated by endothelial lipase (EL). In the present study, we examined the capacity of those LPC to modulate expression of cyclooxygenase (COX)-2 in vascular endothelial cells. Methods & results LPC 16:0 and 20:4 promoted both COX-2 mRNA- and protein synthesis with different potencies and kinetics. While LPC 18:1 induced a weak and transient increase in COX-2 mRNA, but not protein, LPC 18:2 increased COX-2 protein, without impacting mRNA. Chelation of intracellular Ca2+ and inhibition of p38 MAPK markedly attenuated 16:0 LPC- and 20:4 LPC- elicited induction of COX-2 expression, whereas inhibition of phospholipase C (PLC) attenuated only the effect of 16:0 LPC. LPC 16:0 and 20:4 differed markedly in their potencies to increase cytosolic Ca2+ concentration and in the kinetics of p38 MAPK activation. While the effects of 16:0 and 20:4 LPC on COX-2 expression were profoundly sensitive to silencing of either c-Jun or p65 (NF-κB), respectively, silencing of cyclic AMP responsive element binding protein (CREB) attenuated markedly the effect of both LPC. Conclusion Our results indicate that the tested LPC species are capable of inducing COX-2 expression, whereby the efficacy and the relative contribution of underlying signaling mechanisms markedly differ, due to the length and degree of saturation of LPC acyl chains.


PLOS ONE | 2013

Acyl chain-dependent effect of lysophosphatidylcholine on endothelium-dependent vasorelaxation.

Shailaja P. Rao; Monika Riederer; Margarete Lechleitner; Martin Hermansson; Gernot Desoye; Seth Hallström; Wolfgang F. Graier; Saša Frank

Previously we identified palmitoyl-, oleoyl-, linoleoyl-, and arachidonoyl-lysophosphatidylcholine (LPC 16:0, 18:1, 18:2 and 20:4) as the most prominent LPC species generated by endothelial lipase (EL). In the present study, we examined the impact of those LPC on acetylcholine (ACh)- induced vascular relaxation. All tested LPC attenuated ACh-induced relaxation, measured ex vivo, using mouse aortic rings and wire myography. The rank order of potency was as follows: 18:2>20:4>16:0>18:1. The attenuating effect of LPC 16:0 on relaxation was augmented by indomethacin-mediated cyclooxygenase (COX)-inhibition and CAY10441, a prostacyclin (PGI2)- receptor (IP) antagonist. Relaxation attenuated by LPC 20:4 and 18:2 was improved by indomethacin and SQ29548, a thromboxane A2 (TXA2)- receptor antagonist. The effect of LPC 20:4 could also be improved by TXA2- and PGI2-synthase inhibitors. As determined by EIA assays, the tested LPC promoted secretion of PGI2, TXA2, PGF2α, and PGE2, however, with markedly different potencies. LPC 16:0 was the most potent inducer of superoxide anion production by mouse aortic rings, followed by LPC 18:2, 20:4 and 18:1, respectively. The strong antioxidant tempol recovered relaxation impairment caused by LPC 18:2, 18:1 and 20:4, but not by LPC 16:0. The tested LPC attenuate ACh-induced relaxation through induction of proconstricting prostanoids and superoxide anions. The potency of attenuating relaxation and the relative contribution of underlying mechanisms are strongly related to LPC acyl-chain length and degree of saturation.


Biochimica et Biophysica Acta | 2012

Impact of endothelial lipase on cellular lipid composition

Monika Riederer; Harald Köfeler; Margarete Lechleitner; Michaela Tritscher; Saša Frank

Using mass spectrometry (MS), we examined the impact of endothelial lipase (EL) overexpression on the cellular phospholipid (PL) and triglyceride (TG) content of human aortic endothelial cells (HAEC) and of mouse plasma and liver tissue. In HAEC incubated with the major EL substrate, HDL, adenovirus (Ad)-mediated EL overexpression resulted in the generation of various lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) species in cell culture supernatants. While the cellular phosphatidylethanolamine (PE) content remained unaltered, cellular phosphatidylcholine (PC)-, LPC- and TG-contents were significantly increased upon EL overexpression. Importantly, cellular lipid composition was not altered when EL was overexpressed in the absence of HDL. [14C]-LPC accumulated in EL overexpressing, but not LacZ-control cells, incubated with [14C]-PC labeled HDL, indicating EL-mediated LPC supply. Exogenously added [14C]-LPC accumulated in HAEC as well. Its conversion to [14C]-PC was sensitive to a lysophospholipid acyltransferase (LPLAT) inhibitor, thimerosal. Incorporation of [3H]-Choline into cellular PC was 56% lower in EL compared with LacZ cells, indicating decreased endogenous PC synthesis. In mice, adenovirus mediated EL overexpression decreased plasma PC, PE and LPC and increased liver LPC, LPE and TG content. Based on our results, we conclude that EL not only supplies cells with FFA as found previously, but also with HDL-derived LPC and LPE species resulting in increased cellular TG and PC content as well as decreased endogenous PC synthesis.


Archives of Physiology and Biochemistry | 2017

Reduced expression of adipose triglyceride lipase decreases arachidonic acid release and prostacyclin secretion in human aortic endothelial cells

Monika Riederer; Margarete Lechleitner; Harald Köfeler; Saša Frank

Abstract Background: Vascular endothelial cells represent an important source of arachidonic acid (AA)-derived mediators involved in the generation of anti- or proatherogenic environments. Evidence emerged (in mast cells), that in addition to phospholipases, neutral lipid hydrolases as adipose triglyceride lipase (ATGL) also participate in this process. Objective: To examine the impact of ATGL on AA-release from cellular phospholipids (PL) and on prostacyclin secretion in human aortic endothelial cells (HAEC). Methods and results: siRNA-mediated silencing of ATGL promoted lipid droplet formation and TG accumulation in HAEC (nile red stain). ATGL knockdown decreased the basal and A23187 (calcium ionophore)-induced release of 14C-AA from (14C-AA-labeled) HAEC. In A23187-stimulated ATGL silenced cells, this was accompanied by a decreased content of 14C-AA in cellular PL and a decreased secretion of prostacyclin (determined by 6-keto PGF1α EIA). Conclusions: In vascular endothelial cells, the efficiency of stimulus-induced AA release and prostacyclin secretion is dependent on ATGL.


Cell Metabolism | 2006

Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome

Achim Lass; Robert Zimmermann; Guenter Haemmerle; Monika Riederer; Gabriele Schoiswohl; Martina Schweiger; Petra C. Kienesberger; Juliane G. Strauss; Gregor Gorkiewicz; Rudolf Zechner

Collaboration


Dive into the Monika Riederer's collaboration.

Top Co-Authors

Avatar

Saša Frank

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Malli

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Akos Heinemann

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Gernot Desoye

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Seth Hallström

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Andelko Hrzenjak

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harald Köfeler

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge