Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monika Sharma is active.

Publication


Featured researches published by Monika Sharma.


Bioscience Reports | 2010

Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans

Monika Sharma; Raman Manoharlal; Nidhi Puri; Rajendra Prasad

In the present study, we have investigated the antifungal effects of a natural polyphenol, CUR (curcumin), against albicans and non-albicans species of Candida and have shown its ability to inhibit the growth of all the tested strains. The inhibitory effects of CUR were independent of the status of the multidrug efflux pump proteins belonging to either ABC transporter (ATP-binding cassette transporter) or MFS (major facilitator) superfamilies of transporters. By using a systemic murine model of infection, we established that CUR and piperine, when administered together, caused a significant fungal load reduction (1.4log10) in kidneys of Swiss mice. Additionally, CUR raised the levels of ROS (reactive oxygen species), which, as revealed by annexin V-FITC labelling, triggered early apoptosis in Candida cells. Coincident with the raised ROS levels, mRNAs of tested oxidative stress-related genes [CAP1 (Candida albicans AP-1), CaIPF7817 (putative NADH-dependent flavin oxidoreductase), SOD2 (superoxide dismutase 2), GRP2 (NADPH-dependent methyl glyoxal reductase) and CAT1 (catalase 1)] were also elevated. The growth inhibitory effects of CUR could be reversed by the addition of natural and synthetic antioxidants. Notably, independent of ROS status, polyphenol CUR prevented hyphae development in both liquid and solid hypha-inducing media by targeting the global suppressor TUP1 (thymidine uptake 1). Taken together, our results provide the first evidence that CUR acts as an antifungal agent, via generation of oxidative stress, and inhibits hyphae development by targeting TUP1.


Antimicrobial Agents and Chemotherapy | 2009

Curcumin Modulates Efflux Mediated by Yeast ABC Multidrug Transporters and Is Synergistic with Antifungals

Monika Sharma; Raman Manoharlal; Suneet Shukla; Nidhi Puri; Tulika Prasad; Suresh V. Ambudkar; Rajendra Prasad

ABSTRACT Curcumin (CUR), a natural product of turmeric, from rhizomes of Curcuma longa, is a known agent of reversal of drug resistance phenotypes in cancer cells overexpressing ATP-binding cassette (ABC) transporters, viz., ABCB1, ABCG2, and ABCC1. In the present study, we evaluated whether CUR could also modulate multidrug transporters of yeasts that belong either to the ABC family or to the major facilitator superfamily (MFS). The effect of CUR on multidrug transporter proteins was demonstrated by examining rhodamine 6G (R6G) efflux in Saccharomyces cerevisiae cells overexpressing the Candida albicans ABC transporters Cdr1p and Cdr2p (CaCdr1p and CaCdr2p, respectively) and the MFS transporters CaMdr1p and S. cerevisiae Pdr5p. CUR decreased the extracellular concentration of R6G in ABC transporter-expressing cells but had no effect on methotrexate efflux mediated through the MFS transporter CaMdr1p. CUR competitively inhibited R6G efflux and the photolabeling of CaCdr1p by [125I]iodoarylazidoprazosin, a drug analogue of the substrate prazosin (50% inhibitory concentration, 14.2 μM). Notably, the mutant variants of CaCdr1p that displayed abrogated efflux of R6G also showed reduced modulation by CUR. Drug susceptibility testing of ABC protein-expressing cells by spot assays and checkerboard tests revealed that CUR was selectively synergistic with drug substrates such as R6G, ketoconazole, itraconazole, and miconazole but not with fluconazole, voriconazole, anisomycin, cycloheximide, or FK520. Taken together, our results provide the first evidence that CUR modulates only ABC multidrug transporters and could be exploited in combination with certain conventional antifungal drugs to reverse multidrug resistance in Candida cells.


Peptides | 2011

Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans

Indresh Kumar Maurya; Sarika Pathak; Monika Sharma; Hina Sanwal; Preeti M. Chaudhary; Santosh G. Tupe; Mukund V. Deshpande; Virander S. Chauhan; Rajendra Prasad

In the present work, we investigated the antifungal activity of two de novo designed, antimicrobial peptides VS2 and VS3, incorporating unnatural amino acid α,β-dehydrophenylalanine (ΔPhe). We observed that the low-hemolytic peptides could irreversibly inhibit the growth of various Candida species and multidrug resistance strains at MIC(80) values ranging from 15.62 μM to 250 μM. Synergy experiments showed that MIC(80) of the peptides was drastically reduced in combination with an antifungal drug fluconazole. The dye PI uptake assay was used to demonstrate peptide induced cell membrane permeabilization. Intracellular localization of the FITC-labeled peptides in Candida albicans was studied by confocal microscopy and FACS. Killing kinetics, PI uptake assay, and the intracellular presence of FITC-peptides suggested that growth inhibition is not solely a consequence of increased membrane permeabilization. We showed that entry of the peptide in Candida cells resulted in accumulation of reactive oxygen species (ROS) leading to cell necrosis. Morphological alteration in Candida cells caused by the peptides was visualized by electron microscopy. We propose that de novo designed VS2 and VS3 peptides have multiple detrimental effects on target fungi, which ultimately result in cell wall disruption and killing. Therefore, these peptides represent a good template for further design and development as antifungal agents.


Antimicrobial Agents and Chemotherapy | 2011

The Quorum-Sensing Molecule Farnesol Is a Modulator of Drug Efflux Mediated by ABC Multidrug Transporters and Synergizes with Drugs in Candida albicans

Monika Sharma; Rajendra Prasad

ABSTRACT Overexpression of the CaCDR1-encoded multidrug efflux pump protein CaCdr1p (Candida drug resistance protein 1), belonging to the ATP binding cassette (ABC) superfamily of transporters, is one of the most prominent contributors of multidrug resistance (MDR) in Candida albicans. Thus, blocking or modulating the function of the drug efflux pumps represents an attractive approach in combating MDR. In the present study, we provide first evidence that the quorum-sensing molecule farnesol (FAR) is a specific modulator of efflux mediated by ABC multidrug transporters, such as CaCdr1p and CaCdr2p of C. albicans and ScPdr5p of Saccharomyces cerevisiae. Interestingly, FAR did not modulate the efflux mediated by the multidrug extrusion pump protein CaMdr1p, belonging to the major facilitator superfamily (MFS). Kinetic data revealed that FAR competitively inhibited rhodamine 6G efflux in CaCdr1p-overexpressing cells, with a simultaneous increase in an apparent Km without affecting the Vmax values and the ATPase activity. We also observed that when used in combination, FAR at a nontoxic concentration synergized with the drugs at their respective nonlethal concentrations, as was evident from their <0.5 fractional inhibitory concentration index (FICI) values and from the drop of 14- to 64-fold in the MIC80 values in the wild-type strain and in azole-resistant clinical isolates of C. albicans. Our biochemical experiments revealed that the synergistic interaction of FAR with the drugs led to reactive oxygen species accumulation, which triggered early apoptosis, and that both could be partly reversed by the addition of an antioxidant. Collectively, FAR modulates drug extrusion mediated exclusively by ABC proteins and is synergistic to fluconazole (FLC), ketoconazole (KTC), miconazole (MCZ), and amphotericin (AMB).


Fems Yeast Research | 2010

Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis

Monika Sharma; Raman Manoharlal; Arvind S. Negi; Rajendra Prasad

We have shown previously that pure polyphenol curcumin I (CUR-I) shows antifungal activity against Candida species. By employing the chequerboard method, filter disc and time-kill assays, in the present study we demonstrate that CUR-I at non-antifungal concentration interacts synergistically with azoles and polyenes. For this, pure polyphenol CUR-I was tested for synergy with five azole and two polyene drugs - fluconazole (FLC), miconazole, ketoconazole (KTC), itraconazole (ITR), voriconazole (VRC), nystatin (NYS) and amphotericin B (AMB) - against 21 clinical isolates of Candida albicans with reduced antifungal sensitivity, as well as a drug-sensitive laboratory strain. Notably, there was a 10-35-fold drop in the MIC(80) values of the drugs when CUR-I was used in combination with azoles and polyenes, with fractional inhibitory concentration index (FICI) values ranging between 0.09 and 0.5. Interestingly, the synergistic effect of CUR-I with FLC and AMB was associated with the accumulation of reactive oxygen species, which could be reversed by the addition of an antioxidant such as ascorbic acid. Furthermore, the combination of CUR-I and FLC/AMB triggered apoptosis that could also be reversed by ascorbic acid. We provide the first evidence that pure CUR-I in combination with azoles and polyenes represents a novel therapeutic strategy to improve the activity of common antifungals.


Antimicrobial Agents and Chemotherapy | 2014

Curcumin Targets Cell Wall Integrity via Calcineurin-Mediated Signaling in Candida albicans

Awanish Kumar; Sanjiveeni Dhamgaye; Indresh Kumar Maurya; Ashutosh Singh; Monika Sharma; Rajendra Prasad

ABSTRACT Curcumin (CUR) shows antifungal activity against a range of pathogenic fungi, including Candida albicans. The reported mechanisms of action of CUR include reactive oxygen species (ROS) generation, defects in the ergosterol biosynthesis pathway, decrease in hyphal development, and modulation of multidrug efflux pumps. Reportedly, each of these pathways is independently linked to the cell wall machinery in C. albicans, but surprisingly, CUR has not been previously implicated in cell wall damage. In the present study, we performed transcriptional profiling to identify the yet-unidentified targets of CUR in C. albicans. We found that, among 348 CUR-affected genes, 51 were upregulated and 297 were downregulated. Interestingly, most of the cell wall integrity pathway genes were downregulated. The possibility of the cell wall playing a critical role in the mechanism of CUR required further validation; therefore, we performed specific experiments to establish if there was any link between the two. The fractional inhibitory concentration index values of 0.24 to 0.37 show that CUR interacts synergistically with cell wall-perturbing (CWP) agents (caspofungin, calcofluor white, Congo red, and SDS). Furthermore, we could observe cell wall damage and membrane permeabilization by CUR alone, as well as synergistically with CWP agents. We also found hypersusceptibility in calcineurin and mitogen-activated protein (MAP) kinase pathway mutants against CUR, which confirmed that CUR also targets cell wall biosynthesis in C. albicans. Together, these data provide strong evidence that CUR disrupts cell wall integrity in C. albicans. This new information on the mechanistic action of CUR could be employed in improving treatment strategies and in combinatorial drug therapy.


European Journal of Medicinal Chemistry | 2010

Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans

Nidhi Puri; Om Prakash; Raman Manoharlal; Monika Sharma; Indira Ghosh; Rajendra Prasad

In this study, we have explored the structure activity relationships of substrates of two major, promiscuous, multidrug transporters of an opportunistic human pathogen Candida albicans namely, CaCdr1p and CaMdr1p. To differentiate between substrates and non-substrates, the susceptibilities of the Saccharomyces cerevisiae strains over-expressing CaCdr1p or CaMdr1p were determined for 67 structurally diverse xenobiotics. A comparison of physico-chemical indices of these tested compounds enabled identification of molecular descriptors such as, degree of hydrophobicity (MLogP), geometrical descriptor (DISPv), molecular edge descriptor (MDEC.12 and MDEC.13) and 3D-Morse descriptors, that allowed their segregation into substrates and non-substrates for both the transporter proteins. Taken together, present study provides first evidence of chemical basis of substrate specificities of two clinically relevant multidrug transporters of an opportunistic human pathogen C. albicans.


Journal of Amino Acids | 2011

Functionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic Candida albicans

Rajendra Prasad; Monika Sharma; Manpreet Kaur Rawal

Reduced intracellular accumulation of drugs (due to rapid efflux) mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette) and MFS (Major Facilitators) superfamily is one of the most common strategies adopted by multidrug resistance (MDR) pathogenic yeasts. To combat MDR, it is essential to understand the structure and function of these transporters so that inhibitors/modulators to these can be developed. The sequence alignments of the ABC transporters reveal selective divergence within much conserved domains of Nucleotide-Binding Domains (NBDs) which is unique to all fungal transporters. Recently, the role of conserved but divergent residues of Candida Drug Resistance 1 (CDR1), an ABC drug transporter of human pathogenic Candida albicans, has been examined with regard to ATP binding and hydrolysis. In this paper, we focus on some of the recent advances on the relevance of divergent and conserved amino acids of CaCdr1p and also discuss as to how drug interacts with Trans Membrane Domains (TMDs) residues for its extrusion from MDR cells.


Biochimica et Biophysica Acta | 2009

The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of Candida albicans are involved in substrate specificity and drug transport.

Nidhi Puri; Manisha Gaur; Monika Sharma; Suneet Shukla; Suresh V. Ambudkar; Rajendra Prasad

In view of the importance of Candida Drug Resistance Protein (Cdr1p) of pathogenic Candida albicans in azole resistance, we have characterized its ability to efflux variety of substrates by subjecting its entire transmembrane segment (TMS) 5 to site directed mutagenesis. All the mutant variants of putative 21 amino acids of TMS 5 and native CaCdr1p were over expressed as a GFP-tagged protein in a heterologous host Saccharomyces cerevisiae. Based on the drug susceptibility pattern, the mutant variants could be grouped into two categories. The variants belonging to first category were susceptible to all the tested drugs, as compared to those belonging to second category which exhibited resistance to selective drugs. The mutant variants of both the categories were analyzed for their ATP catalysis and drug efflux properties. Irrespective of the categories, most of the mutant variants of TMS 5 showed an uncoupling between ATP hydrolysis and drug efflux. The mutant variants such as M667A, F673A, I675A and P678A were an exception since they reflected a sharp reduction in both K(m) and V(max) values of ATPase activity when compared with WT CaCdr1p-GFP. Based on the competition experiments, we could identify TMS 5 residues which are specific to interact with select drugs. TMS 5 residues of CaCdr1p thus not only impart substrate specificity but also selectively act as a communication link between ATP hydrolysis and drug transport.


Frontiers in Bioscience | 2012

Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis.

Monika Sharma; Sanjiveeni Dhamgaye; Ashutosh Singh; Rajendra Prasad

This study shows that antifungal curcumin (CUR), significantly depletes ergosterol levels in Candida albicans. CUR while displaying synergy with fluconazole (FLC) lowers ergosterol. However, CUR alone at its synergistic concentration (lower than MIC50), could not affect ergosterol contents. For deeper insight of CUR effects on lipids, we performed high throughput mass spectroscopy (MS) based lipid profiling of C. albicans cells. The lipidome analysis revealed that there were no major changes in phosphoglycerides (PGLs) composition following CUR treatment of Candida, however, significant differences in molecular species of PGLs were detected. Among major SPLs, CUR treatment resulted in the reduction of ceramide and accumulation of IPCs levels. The lipidome of CUR treated cells confirmed a dramatic drop in the ergosterol levels with a simultaneous accumulation of its biosynthetic precursors. This was further supported by the fact that the mutants defective in ergosterol biosynthesis (ERG2 and ERG11) and those lacking the transcription factor regulating ergosterol biosynthesis, UPC2, were highly susceptible to CUR. Our study first time shows that CUR, for its antifungal activity, targets and down regulates delta 5, 6 desaturase (ERG3) resulting in depletion of ergosterol. This results in parallel accumulation of ergosterol biosynthetic precursors, generation of reactive oxygen species (ROS) and cell death.

Collaboration


Dive into the Monika Sharma's collaboration.

Top Co-Authors

Avatar

Rajendra Prasad

Amity Institute of Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Raman Manoharlal

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Nidhi Puri

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Awanish Kumar

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suneet Shukla

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Suresh V. Ambudkar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge