Monika Stachura
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monika Stachura.
Inorganic Chemistry | 2008
Marek Łuczkowski; Monika Stachura; Virgil Schirf; Borries Demeler; Lars Hemmingsen; Vincent L. Pecoraro
A de novo protein design strategy provides a powerful tool to elucidate how heavy metals interact with proteins.Cysteine derivatives of the TRI peptide family (Ac-G(LKALEEK)4G-NH2) have been shown to bind heavy metals in an unusual trigonal geometry. Our present objective was to design binding sites in R-helical scaffolds that are able to form higher coordination number complexes with Cd(II) and Hg(II). Herein, we evaluate the binding of Cd(II) and Hg(II) to double cysteine substituted TRI peptides lacking intervening leucines between sulfurs in the heptads. We compare a -Cysd-X-X-X-Cysa- binding motif found in TRIL12CL16C to the more common -Cysa-X-X-Cysd- sequence of native proteins found in TRIL9CL12C. Compared to TRI, these substitutions destabilize the helical aggregates,leading to mixtures of two- and three-stranded bundles. The three-stranded coiled coils are stabilized by the addition of metals. TRIL9CL12C forms distorted tetrahedral complexes with both Cd(II) and Hg(II), as supported by UV-vis,CD, 113Cd NMR, 199Hg NMR and 111mCd PAC spectroscopy. Additionally, these signatures are very similar to those found for heavy metal substituted rubredoxin. These results suggest that in terms of Hg(II) binding, TRIL9CL12Ccan be considered as a good mimic of the metallochaperone HAH1, that has previously been shown to form protein dimers. TRIL12CL16C has limited ability to generate homoleptic tetrahedral complexes (Cd(SR)42-). These type of complexes were identified only for Hg(II). However, the spectroscopic signatures suggest a different geometry around the metal ion, demonstrating that effective metal sequestration into the hydrophobic interior of the bundle requires more than simply adding two sulfur residues in adjacent layers of the peptide core. Thus, proper design of metal binding sites must also consider the orientation of cysteine sidechains in a vs d positions of the heptads.
Chemistry: A European Journal | 2013
Marek Łuczkowski; Brian A. Zeider; Alia V. H. Hinz; Monika Stachura; Saumen Chakraborty; Lars Hemmingsen; David L. Huffman; Vincent L. Pecoraro
Although metal ion homeostasis in cells is often mediated through metallochaperones, there are opportunities for toxic metals to be sequestered through the existing transport apparatus. Proper trafficking of Cu(I) in human cells is partially achieved through complexation by HAH1, the human metallochaperone responsible for copper delivery to the Wilson and Menkes ATPase located in the trans-Golgi apparatus. In addition to binding copper, HAH1 strongly complexes Hg(II), with the X-ray structure of this complex previously described. It is important to clarify the solution behavior of these systems and, therefore, the binding of Hg(II) to HAH1 was probed over the pH range 7.5 to 9.4 using (199)Hg NMR, (199m)Hg PAC and UV-visible spectroscopies. The metal-dependent protein association over this pH range was examined using analytical gel-filtration. It can be concluded that at pH 7.5, Hg(II) is bound to a monomeric HAH1 as a two coordinate, linear complex (HgS2), like the Hg(II)-Atx1 X-ray structure (PDB ID: 1CC8). At pH 9.4, Hg(II) promotes HAH1 association, leading to formation of HgS3 and HgS4 complexes, which are in exchange on the μs-ns time scale. Thus, structures that may represent central intermediates in the process of metal ion transfer, as well as their exchange kinetics have been characterized.
ChemPhysChem | 2014
A. Gottberg; Monika Stachura; Magdalena Kowalska; M. L. Bissell; Vaida Arcisauskaite; Klaus Blaum; Alexander Helmke; Karl Johnston; Kim Dieter Kreim; Flemming H. Larsen; R. Neugart; G. Neyens; Ronald Garcia Ruiz; Dániel Szunyogh; Peter W. Thulstrup; D. T. Yordanov; Lars Hemmingsen
β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.
Journal of the American Chemical Society | 2017
Monika Stachura; Saumen Chakraborty; A. Gottberg; Leela Ruckthong; Vincent L. Pecoraro; Lars Hemmingsen
Nanosecond ligand exchange dynamics at metal sites within proteins is essential in catalysis, metal ion transport, and regulatory metallobiochemistry. Herein we present direct observation of the exchange dynamics of water at a Cd2+ binding site within two de novo designed metalloprotein constructs using 111mCd perturbed angular correlation (PAC) of γ-rays and 113Cd NMR spectroscopy. The residence time of the Cd2+-bound water molecule is tens of nanoseconds at 20 °C in both proteins. This constitutes the first direct experimental observation of the residence time of Cd2+ coordinated water in any system, including the simple aqua ion. A Leu to Ala amino acid substitution ∼10 Å from the Cd2+ site affects both the equilibrium constant and the residence time of water, while, surprisingly, the metal site structure, as probed by PAC spectroscopy, remains essentially unaltered. This implies that remote mutations may affect metal site dynamics, even when structure is conserved.
Nuclear Physics News | 2015
Monika Stachura; Alexander Gottberg; Magdalena Kowalska; Karl Johnston; Lars Hemmingsen
Applications of nuclear spectroscopic techniques are well established in chemistry and biochemistry, where, for example, conventional nuclear magnetic resonance (NMR) spectroscopy is an indispensable analytical tool [1]. NMR is used routinely to identify small organic molecules in quality control, and in more complex research applications to elucidate structure and dynamics of large biomolecules such as proteins and nucleic acids. Additionally, magnetic resonance (MR) scanners are available at most large hospitals for imaging, and it is now even possible to acquire affordable desk top NMR instruments with permanent magnets, aimed at small businesses and educational institutions. However, conventional NMR spectroscopy faces certain limitations, mainly due to: (1) relatively poor sensitivity and (2) the fact that there are elements that are difficult to detect, because of poor NMR response. To overcome the first problem, a variety of hyperpolarization techniques have been developed, reaching nuclear spin polarization in the % range [2], which is far beyond what may be achieved at thermal equilibrium even in strong external magnetic fields at room temperature. β-detected NMR (β-NMR) spectroscopy belongs to this family of specialized NMR techniques, where considerable nuclear spin polarization is created prior to the NMR measurement. The sensitivity of β-NMR spectroscopy is further enhanced, as it is a radioisotope-based technique, exploiting the detection of anisotropic emission of β-particles from the spin polarized nuclei, vide infra, leading to a billion-fold or higher increase in sensitivity as compared to conventional NMR spectroscopy on stable isotopes. In addition to this, some of the elements which are problematic in conventional NMR spectroscopy, such as Mg, Ca, Cu, and Zn, already are or might be accessible with β-NMR spectroscopy [3–5]. Several applications of β-NMR spectroscopy in nuclear, solid state physics, and materials science have been published over the past decades [3–14] and references therein, and with the project described herein, we aim to advance the applications to solution chemistry and biochemistry [5].
Inorganic Chemistry | 2012
Johan Vibenholt; Magnus Schau-Magnussen; Monika Stachura; Morten J. Bjerrum; Peter W. Thulstrup; Vaida Arcisauskaite; Lars Hemmingsen
(204m)Pb perturbed angular correlation of γ-rays (PAC) spectroscopy has been applied successfully for the first time to detect the nuclear quadrupole interaction in a lead(II) coordination compound in a molecular crystal [tetraphenylarsonium lead(II) isomaleonitriledithiolate ([AsPh(4)](4)[Pb(2)(i-mnt)(4)])]. The recorded parameters from a powder crystalline sample are ν(Q) = 0.178(1) GHz and η = 0.970(7). The electric field gradient (EFG) was determined at the PW91/QZ4P level including relativistic effects using the two-component zeroth-order regular approximation method for both the [Pb(i-mnt)(2)](2-) monomer and the [Pb(2)(i-mnt)(4)](4-) dimer. Only the EFG for the latter compares favorably with the experimental data, indicating that the picture of this complex as a prototypical hemidirected coordination geometry with a stereochemically active lone pair on lead(II) is inadequate. Advantages and limitations of (204m)Pb PAC spectroscopy as a novel technique to elucidate the electronic and molecular structures of lead-containing complexes and biomolecules are presented.
Dalton Transactions | 2015
Dániel Szunyogh; Béla Gyurcsik; Flemming H. Larsen; Monika Stachura; Peter W. Thulstrup; Lars Hemmingsen; Attila Jancsó
Angewandte Chemie | 2015
Dániel Szunyogh; Hajnalka Szokolai; Peter W. Thulstrup; Flemming H. Larsen; Béla Gyurcsik; Niels Johan Christensen; Monika Stachura; Lars Hemmingsen; Attila Jancsó
Hyperfine Interactions | 2010
Lars Hemmingsen; Monika Stachura; Peter W. Thulstrup; Niels Johan Christensen; K. Johnston
EPJ Web of Conferences | 2015
R.F. Garcia Ruiz; M. L. Bissell; A. Gottberg; Monika Stachura; Lars Hemmingsen; G. Neyens; N. Severijns