Monika Vilémová
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monika Vilémová.
Thermal Spray Technology | 2016
Ashish Ganvir; Nicholas Curry; Nicolaie Markocsan; Per Nylén; Shrikant V. Joshi; Monika Vilémová; Zdenek Pala
Suspension plasma spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings (TBCs) and enables production of coatings with a variety of structures—highly dense, highly porous, segmented, or columnar. This work investigates suspension plasma-sprayed TBCs produced using axial injection with different process parameters. The influence of coating microstructure on thermal properties was of specific interest. Tests carried out included microstructural analysis, phase analysis, determination of porosity, and pore size distribution, as well as thermal diffusivity/conductivity measurements. Results showed that axial suspension plasma spraying process makes it possible to produce various columnar-type coatings under different processing conditions. Significant influence of microstructural features on thermal properties of the coatings was noted. In particular, the process parameter-dependent microstructural attributes, such as porosity, column density, and crystallite size, were shown to govern the thermal diffusivity and thermal conductivity of the coating.
Journal of Thermal Spray Technology | 2013
Jiří Matějíček; T. Kavka; Gabriele Bertolissi; Pavel Ctibor; Monika Vilémová; Radek Mušálek; Barbara Nevrlá
Tungsten-based coatings have potential application in the plasma-facing components in future nuclear fusion reactors. By the combination of refractory tungsten with highly thermal conducting copper, or steel as a construction material, functionally graded coatings can be easily obtained by plasma spraying, and may result in the development of a material with favorable properties. During plasma spraying of these materials in the open atmosphere, oxidation is an important issue, which could have adverse effects on their properties. Among the means to control it is the application of inert gas shrouding, which forms the subject of this study and represents a lower-cost alternative to vacuum or low-pressure plasma spraying, potentially applicable also for spraying of large surfaces or spacious components. It is a continuation of recent studies focused on the effects of various parameters of the hybrid water-argon torch on the in-flight behavior of copper and tungsten powders and the resultant coatings. In the current study, argon shrouding with various configurations of the shroud was applied. The effects of torch parameters, such as power and argon flow rate, and powder morphology were also investigated. Their influence on the particle in-flight behavior as well as the structure, composition and properties of the coatings were quantified. With the help of auxiliary calculations, the mass changes of the powder particles, associated with oxidation and evaporation, were assessed.
Nukleonika | 2015
Jiří Matějíček; Barbara Nevrlá; Monika Vilémová; Hanna Boldyryeva
Abstract Tungsten is a prime candidate material for the plasma-facing components in future fusion devices, e.g. ITER and DEMO. Because of the harsh and complex loading conditions and the differences in material properties, joining of the tungsten armor to the underlying construction and/or cooling parts is a complicated issue. To alleviate the thermal stresses at the joint, a sharp interface may be replaced by a gradual one with a smoothly varying composition. In this paper, several techniques for the formation of tungsten-steel composites and graded layers are reviewed. These include plasma spraying, laser cladding, hot pressing and spark plasma sintering. Structure, composition and selected thermal and mechanical properties of representative layers produced by each of these techniques are presented. A summary of advantages and disadvantages of the techniques and an assessment of their suitability for the production of plasma-facing components is provided.
Journal of Thermal Spray Technology | 2012
Monika Vilémová; Jiří Matějíček; Radek Mušálek; Jiří Nohava
Mechanical and thermal properties of thermal sprayed coatings, especially ceramics, are strongly influenced by cracks and pores that are present in the coating microstructure. In the recent past, there have been efforts to find an analytical model describing the coating properties based on the microstructural characteristics. Various analytical models were developed and published in the literature. In this study, several major models were applied to ceramic and metal coatings to describe their elastic modulus and thermal conductivity. The sensitivity of the models to the variations in the microstructure and relevancy of their use in specific cases were examined. The results were compared with those obtained by FEM modeling and experimentally measured values.
Journal of Thermal Spray Technology | 2015
Jan Medřický; Nicholas Curry; Zdenek Pala; Monika Vilémová; Tomáš Chráska; Jimmy Johansson; Nicolaie Markocsan
Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.
Journal of Thermal Spray Technology | 2013
Radek Mušálek; Václav Pejchal; Monika Vilémová; Jiří Matějíček
Adhesion/cohesion testing represents one of the most common methods for benchmarking and optimization of thermal spray coatings. However, owing to the inhomogeneous coating microstructure, such testing may be quite troublesome. In this study, adhesion/cohesion strength of representative metallic and ceramic coatings deposited by water-stabilized plasma (WSP) spraying was evaluated by four different methods: tensile adhesion test, pin test, tubular coating tensile test, and shear test. Combination of various methods enabled the evaluation of the coating adhesion/cohesion strength under different loading conditions. Limitations and benefits of each method for testing of WSP coatings are demonstrated. Dominating failure micromechanisms were determined by supplementary fractographic analysis.
Physica Scripta | 2016
Monika Vilémová; Zdenek Pala; Aleš Jäger; Jiří Matějíček; Maryna Chernyshova; Ewa Kowalska-Strzęciwilk; D Tonarová; Vladimir A. Gribkov
Progress in the field of nuclear fusion requires the development of a new generation of tungsten materials that are expected to meet specific property, lifetime and safety requirements. Pursuing this goal, the new materials must be properly tested in a wide range of conditions including cases where material is brought to the molten stage, such as with large fusion plasma instabilities. In this study, two prospective candidates from the family of dispersion strengthened (DS) tungsten materials, i.e., W-1%Y2O3 and W-2.5%TiC, were subjected to extreme heat loading exerted by the deuterium plasma generator PF6. The study focuses on the interaction of the tungsten matrix with the dispersed particles during material melting. The materials underwent significant changes in microstructure and phase content. Among the most serious was the loss of TiC particles and void formation in W-2.5%TiC and phase change of polymorphic Y2O3 particles in W-1% Y2O3.
International Thermal Spray Conference and Exposition, ITSC 2015; Long Beach; United States; 11 May 2015 through 14 May 2015 | 2015
Ashish Ganvir; Nicholas Curry; Nicolaie Markocsan; Per Nylén; Monika Vilémová; Zdenek Pala
Suspension Plasma Spraying is a relatively new thermal spraying technique to produce advanced thermal barrier coatings. This technique enables the production of a variety of structures from highly ...
Nukleonika | 2015
Monika Vilémová; Jiří Matějíček; Barbara Nevrlá; Maryna Chernyshova; P. Gasior; Ewa Kowalska-Strzęciwilk; Aleš Jäger
Abstract Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS) and by water stabilized plasma spraying (WSP) technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns). Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.
Acta Polytechnica CTU Proceedings | 2017
Tomas Kolegar; Martin Matousek; Monika Vilémová; Vladimir Stary
Preparation of a coating with a high quality requires good adhesion of the film to the substrate. The paper deals with the adhesion of biocompatible TiNb coating with different base materials. Several materials such as titanium CP grade 2, titanium alloys Ti6Al4V and stainless steel AISI 316L were measured. Testing samples were made in the shape of small discs. Those samples were coated with a TiNb layer by using the PVD method (magnetron sputtering). Onto the measured layer of TiNb an assistant cylinder was stuck using a high strength epoxy adhesive E1100S. The sample with the assistant cylinder was fixed into a special fixture and the whole assembly underwent pull-off testing for adhesion. The main result of this experiment was determining the strength needed to peel the layer and morphology and size of the breakaway. As a result, we will be able to determine the best base material and conditions where the coating will be remain intact with the base material.