Monique Beuve
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monique Beuve.
Biology Direct | 2009
Christophe Bertsch; Monique Beuve; Valerian V. Dolja; Marion Wirth; Frédérique Pelsy; Etienne Herrbach; Olivier Lemaire
BackgroundPrevious studies have revealed a wide-spread occurence of the partial and complete genomes of the reverse-transcribing pararetroviruses in the nuclear genomes of herbaceous plants. Although the absence of the virus-encoded integrases attests to the random and incidental incorporation of the viral sequences, their presence could have functional implications for the virus-host interactions.HypothesisAnalyses of two nuclear genomes of grapevine revealed multiple events of horizontal gene transfer from pararetroviruses. The ~200–800 bp inserts that corresponded to partial ORFs encoding reverse transcriptase apparently derived from unknown or extinct caulimoviruses and tungroviruses, were found in 11 grapevine chromosomes. In contrast to the previous reports, no reliable cases of the inserts derived from the positive-strand RNA viruses were found. Because grapevine is known to be infected by the diverse positive-strand RNA viruses, but not pararetroviruses, we hypothesize that pararetroviral inserts have conferred host resistance to these viruses. Furthermore, we propose that such resistance involves RNA interference-related mechanisms acting via small RNA-mediated methylation of pararetroviral DNAs and/or via degradation of the viral mRNAs.ConclusionThe pararetroviral sequences in plant genomes may be maintained due to the benefits of virus resistance to this class of viruses conferred by their presence. Such resistance could be particularly significant for the woody plants that must withstand years- to centuries-long virus assault. Experimental research into the RNA interference pathways involving the integrated pararetroviral inserts is required to test this hypothesis.ReviewersThis article was reviewed by Arcady R. Mushegian, I. King Jordan, and Eugene V. Koonin.
Phytopathology | 2012
J. Le Maguet; Monique Beuve; Etienne Herrbach; Olivier Lemaire
Grapevine leafroll disease is caused by grapevine leafroll-associated viruses (GLRaVs). These viruses are common in vineyards worldwide and often associated with vitiviruses that are involved in the rugose wood complex of grapevine. Ten mealybug species are known as vectors of one or several of these grapevine viruses, including the apple mealybug Phenacoccus aceris which is widespread in Holarctic regions and able to transmit Grapevine leafroll-associated virus-1 and -3 (GLRaV-1 and -3). Our aim was to characterize the transmission features of leafroll viruses by Phenacoccus aceris in order to better understand the contribution of this mealybug to leafroll epidemics. Results showed that Phenacoccus aceris is able to transmit GLRaV-1, -3, -4, -5, -6, and -9 to grapevine but not GLRaV-7. This is the first report of GLRaV-6 transmission by a mealybug. Also, for the first time it was shown that Phenacoccus aceris could vector vitiviruses Grapevine virus A (GVA) and Grapevine virus B (GVB). First instar nymphs were the most efficient stage in transmitting GLRaV-1, -3, and GVA. This research sheds light on the transmission biology of grapevine viruses by Phenacoccus aceris and represents a step forward to leafroll disease management.
Journal of General Virology | 2010
Anna Kozlowska-Makulska; H. Guilley; M. S. Szyndel; Monique Beuve; Olivier Lemaire; Etienne Herrbach; Salah E. Bouzoubaa
Post-transcriptional gene silencing (PTGS), or RNA silencing, is one of the key mechanisms of antiviral defence used by plants. To counter this defence response, viruses produce suppressor proteins that are able to inhibit the PTGS pathway or to interfere with some of its function. The aim of this study was to evaluate the RNA silencing suppressor (RSS) activity of P0 proteins from selected European isolates of the beet-infecting poleroviruses beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV) using two different experimental systems: (i) agro-infiltration of Nicotiana benthamiana green fluorescent protein-positive plants and (ii) mechanical inoculation of Chenopodium quinoa using a beet necrotic yellow vein virus (BNYVV, genus Benyvirus) RNA3-based replicon. The results demonstrated that P0 of most BMYV isolates exhibited RSS activity, although at various efficiencies among isolates. Conversely, P0 of BChV isolates displayed no RSS activity in either of the two systems under the experimental conditions used. These results are the first reported evidence that P0 proteins of two closely related beet poleroviruses show strain-specific differences in their effects on RNA silencing.
Plant Biotechnology Journal | 2018
Jean-Michel Hily; Sandrine Demanèche; Nils Poulicard; Mélanie Tannières; Samia Djennane; Monique Beuve; Emmanuelle Vigne; Gérard Demangeat; Véronique Komar; Claude Gertz; Aurélie Marmonier; Caroline Hemmer; Sophie Vigneron; Armelle Marais; Thierry Candresse; Pascal Simonet; Olivier Lemaire
Summary For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus‐resistant transgenic plants based on the pathogen‐derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised. Here, we report no evidence of any undesirable impacts of genetically modified (GM) grapevine rootstock on its biotic environment. Using state of the art metagenomics, we analysed two compartments in depth, the targeted Grapevine fanleaf virus (GFLV) populations and nontargeted root‐associated microbiota. Our results reveal no statistically significant differences in the genetic diversity of bacteria that can be linked to the GM trait. In addition, no novel virus or bacteria recombinants of biosafety concern can be associated with transgenic grapevine rootstocks cultivated in commercial vineyard soil under greenhouse conditions for over 6 years.
Archives of Virology | 2018
Monique Beuve; Jean-Michel Hily; Antoine Alliaume; Catherine Reinbold; Jean Le Maguet; Thierry Candresse; Etienne Herrbach; Olivier Lemaire
We have characterized the virome of a grapevine Pinot Noir accession (P70) that displayed, over the year, very stable and strong leafroll symptoms. For this, we have used two extraction methods (dsRNA and total RNA) coupled with the high throughput sequencing (HTS) Illumina technique. While a great disparity in viral sequences were observed, both approaches gave similar results, revealing a very complex infection status. Five virus and viroid isolates [Grapevine leafroll-associated viruse-1 (GLRaV-1), Grapevine virus A (GVA), Grapevine rupestris stem pitting-associated virus (GRSPaV), Hop stunt viroid (HSVd) and Grapevine yellow speckle viroid 1 (GYSVd1)] were detected in P70 with a grand total of eleven variants being identified and de novo assembled. A comparison between both extraction methods regarding their power to detect viruses and the ease of genome assembly is also provided.
European Journal of Plant Pathology | 2009
Anna Kozlowska-Makulska; Monique Beuve; Jerzy Syller; M. S. Szyndel; Olivier Lemaire; Salah Bouzoubaa; Etienne Herrbach
Different field isolates of the ‘beet poleroviruses’ Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV) (genus Polerovirus, family Luteoviridae) collected in France and Poland were evaluated for transmissibility from and to sugar beet plants by different aphid species. In general, both BMYV and BChV were efficiently transmitted by Myzus persicae and by a French clone of Macrosiphum euphorbiae. In contrast, transmissibility of the two poleroviruses by an English clone of M. euphorbiae was evidently weaker, although the aphid samples contained the virus as demonstrated by RT-PCR. None of the BMYV or BChV isolates was transmitted by Aphis fabae or Myzus ascalonicus. In attempting to correlate biological properties with molecular variations, the RT proteins were sequenced. Some amino acid point variations, presumably affecting aphid transmissibility, were identified.
Archives of Virology | 2018
Jean-Michel Hily; Monique Beuve; Emmanuelle Vigne; Gérard Demangeat; Thierry Candresse; Olivier Lemaire
Over the last decade, many scientific disciplines have been impacted by the dawn of new sequencing techniques (HTS: high throughput sequencing). Plant pathology and more specifically virology have been greatly transformed by this ‘metagenomics’ paradigm shift. Such tools significantly facilitate disease diagnostics with tremendous sensitivity, providing invaluable information such as an exhaustive list of viruses being present in a sample as well as their relative concentration. In addition, many new plant viruses have been discovered. Using RNAseq technology, in silico reconstruction of complete viral genome sequences is easily attainable. This step is of importance for taxonomy, population structure analyses, phylogeography and viral evolution studies. Here, after assembling 81 new near-complete genome sequences of grapevine rupestris stem pitting-associated virus (GRSPaV), we performed a genome-wide diversity study of this ubiquitous virus of grapevine worldwide.
Archives of Virology | 2015
Anna Kozlowska-Makulska; Beata Hasiow-Jaroszewska; M. S. Szyndel; Etienne Herrbach; Salah Bouzoubaa; Olivier Lemaire; Monique Beuve
Samples containing two viruses belonging to the genus Polerovirus, beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV), were collected from French and Polish sugar beet fields. The molecular properties of 24 isolates of BChV and BMYV were investigated, and their genetic diversity was examined in the coat protein (CP)- and P0-encoding genes. For the first time, we have demonstrated that beet polerovirus populations include recombinants between BChV and BMYV containing breakpoints within the CP gene. Moreover, a partial correlation between geographic origin and phylogenetic clustering was observed for BMYV isolates.
Plant Disease | 2017
Thierry Candresse; Chantal Faure; Sébastien Theil; Monique Beuve; Olivier Lemaire; A. S. Spilmont; Armelle Marais
First Report of Grapevine asteroid mosaic-associated virus Infecting Grapevine (Vitis vinifera) in France
Plant Disease | 2007
A. Kozlowska-Makulska; M. S. Szyndel; J. Syller; S. Bouzoubaa; Monique Beuve; Olivier Lemaire; E. Herrbach
Yellowing symptoms on sugar beet (Beta vulgaris L.) are caused by several viruses, especially those belonging to the genus Polerovirus of the family Luteoviridae, including Beet mild yellowing virus (BMYV) and Beet western yellows virus (BWYV), and recently, a new species, Beet chlorosis virus (BChV), was reported (2). To identify Polerovirus species occurring in beet crops in Poland and determine their molecular variability, field surveys were performed in the summer and autumn of 2005. Leaves from symptomatic beet plants were collected at 26 localities in the main commercial sugar-beet-growing areas in Poland that included the Bydgoszcz, Kutno, Lublin, Poznań, Olsztyn, and Warszawa regions. Enzyme-linked immunosorbent assay (ELISA) tests (Loewe Biochemica GmbH, Sauerlach, Germany) detected poleroviruses in 23 of 160 samples (approximately 20 samples from each field). Multiplex reverse-transcription polymerase chain reaction (RT-PCR) (1) (GE Healthcare S.A.-Amersham Velizy, France) confirmed the presence of poleroviruses in 13 of 23 samples. Nine of twenty sugar beet plants gave positive reactions with BChV-specific primers and three with primers specific to the BMYV P0 protein. Two isolates reacted only with primer sets CP+/CP, sequences that are highly conserved for all beet poleroviruses. Leaf samples collected from three plants infected with BChV were used as inoculum sources for Myzus persicae in transmission tests to suitable indicator plants including sugar beet, red beet (Beta vulgaris L. var. conditiva Alef.), and Chenopodium capitatum. All C. capitatum and beet plants were successfully infected with BChV after a 48-h acquisition access period and an inoculation access period of 3 days. Transmission was confirmed by the presence of characteristic symptoms and by ELISA. Amino acid sequences obtained from each of four purified (QIAquick PCR Purification kit, Qiagen S.A., Courtaboeuf, France) RT-PCR products (550 and 750 bp for CP and P0, respectively) were 100% identical with the CP region (GenBank Accession No. AAF89621) and 98% identical with the P0 region (GenBank Accession No. NP114360) of the French isolate of BChV. To our knowledge, this is the first report of BChV in Poland. References: (1) S. Hauser et al. J. Virol. Methods 89:11, 2000. (2) M. Stevens et al. Mol. Plant Pathol. 6:1, 2005.