Monique Bolotin-Fukuhara
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Monique Bolotin-Fukuhara.
FEBS Letters | 2000
Gaëlle Blandin; Pascal Durrens; Fredj Tekaia; Michel Aigle; Monique Bolotin-Fukuhara; Elisabeth Bon; Serge Casaregola; Jacky de Montigny; Claude Gaillardin; Andrée Lépingle; Bertrand Llorente; Alain Malpertuy; Cécile Neuvéglise; Odile Ozier-Kalogeropoulos; Arnaud Perrin; Serge Potier; Jean-Luc Souciet; Emmanuel Talla; Claire Toffano-Nioche; Micheline Wésolowski-Louvel; Christian Marck; Bernard Dujon
Since its completion more than 4 years ago, the sequence of Saccharomyces cerevisiae has been extensively used and studied. The original sequence has received a few corrections, and the identification of genes has been completed, thanks in particular to transcriptome analyses and to specialized studies on introns, tRNA genes, transposons or multigene families. In order to undertake the extensive comparative sequence analysis of this program, we have entirely revisited the S. cerevisiae sequence using the same criteria for all 16 chromosomes and taking into account publicly available annotations for genes and elements that cannot be predicted. Comparison with the other yeast species of this program indicates the existence of 50 novel genes in segments previously considered as ‘intergenic’ and suggests extensions for 26 of the previously annotated genes.
FEBS Letters | 2000
Bertrand Llorente; Alain Malpertuy; Cécile Neuvéglise; Jacky de Montigny; Michel Aigle; François Artiguenave; Gaëlle Blandin; Monique Bolotin-Fukuhara; Elisabeth Bon; Serge Casaregola; Pascal Durrens; Claude Gaillardin; Andrée Lépingle; Odile Ozier-Kalogeropoulos; Serge Potier; William Saurin; Fredj Tekaia; Claire Toffano-Nioche; Micheline Wésolowski-Louvel; Patrick Wincker; Jean Weissenbach; Jean-Luc Souciet; Bernard Dujon
We have analyzed the evolution of chromosome maps of Hemiascomycetes by comparing gene order and orientation of the 13 yeast species partially sequenced in this program with the genome map of Saccharomyces cerevisiae. From the analysis of nearly 8000 situations in which two distinct genes having homologs in S. cerevisiae could be identified on the sequenced inserts of another yeast species, we have quantified the loss of synteny, the frequency of single gene deletion and the occurrence of gene inversion. Traces of ancestral duplications in the genome of S. cerevisiae could be identified from the comparison with the other species that do not entirely coincide with those identified from the comparison of S. cerevisiae with itself. From such duplications and from the correlation observed between gene inversion and loss of synteny, a model is proposed for the molecular evolution of Hemiascomycetes. This model, which can possibly be extended to other eukaryotes, is based on the reiteration of events of duplication of chromosome segments, creating transient merodiploids that are subsequently resolved by single gene deletion events.
FEBS Letters | 2000
Alain Malpertuy; Fredj Tekaia; Serge Casaregola; Michel Aigle; François Artiguenave; Gaëlle Blandin; Monique Bolotin-Fukuhara; Elisabeth Bon; Jacky de Montigny; Pascal Durrens; Claude Gaillardin; Andrée Lépingle; Bertrand Llorente; Cécile Neuvéglise; Odile Ozier-Kalogeropoulos; Serge Potier; William Saurin; Claire Toffano-Nioche; Micheline Wésolowski-Louvel; Patrick Wincker; Jean Weissenbach; Jean-Luc Souciet; Bernard Dujon
Comparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from ‘maverick’ genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the ‘maverick’ genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear ‘Ascomycetes‐specific’. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein‐coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the ‘Ascomycetes‐specific’ genes tend to diverge more rapidly in evolution than that of other genes. Half of the ‘Ascomycetes‐specific’ genes are functionally characterized in S. cerevisiae, and a few functional categories are over‐represented in them.
Molecular Microbiology | 1996
Van‐Dinh Dang; Michèle Valens; Monique Bolotin-Fukuhara; Bertrand Daignan-Fornier
Two new yeast genes, named ASN1 and ASN2, were isolated by complementation of the growth defect of an asparagine auxotrophic mutant. Genetical analysis indicates that these two genes are allelic to the asnA and asnB loci described previously. Simultaneous disruption of both genes leads to a total asparagine auxotrophy, while disruption of asn1 or asn2 alone has no effect on growth under tested conditions. Nucleotide sequences of ASN1 and ASN2 revealed striking similarities with genes encoding asparagine synthetase (AS) from other organisms. Regulation of ASN1 and ASN2 expression was studied using lacZ fusions and both genes were found to be several times less expressed in the absence of the transcription activator Gcn4p. The HAP complex, another transcription factor that binds to CCAAT‐box sequences, was shown to specifically affect ASN1 expression. Hap2p and Hap3p subunits of the HAP complex are required for optimal expression of ASN1, while the Hap4p regulatory subunit, which is required for regulation by the carbon source, plays a minor role in this process. Consistent with the weak effect of Hap4p, the carbon source does not significantly affect expression of ASN1. Our results show that the role of the HAP complex is not limited to activation of genes required for respiratory metabolism.
FEBS Letters | 2000
Fredj Tekaia; Gaëlle Blandin; Alain Malpertuy; Bertrand Llorente; Pascal Durrens; Claire Toffano-Nioche; Odile Ozier-Kalogeropoulos; Elisabeth Bon; Claude Gaillardin; Michel Aigle; Monique Bolotin-Fukuhara; Serge Casaregola; Jacky de Montigny; Andrée Lépingle; Cécile Neuvéglise; Serge Potier; Jean-Luc Souciet; Micheline Wésolowski-Louvel; Bernard Dujon
The primary analysis of the sequences for our Hemiascomycete random sequence tag (RST) project was performed using a combination of classical methods for sequence comparison and contig assembly, and of specifically written scripts and computer visualization routines. Comparisons were performed first against DNA and protein sequences from Saccharomyces cerevisiae, then against protein sequences from other completely sequenced organisms and, finally, against protein sequences from all other organisms. Blast alignments were individually inspected to help recognize genes within our random genomic sequences despite the fact that only parts of them were available. For each yeast species, validated alignments were used to infer the proper genetic code, to determine codon usage preferences and to calculate their degree of sequence divergence with S. cerevisiae. The quality of each genomic library was monitored from contig analysis of the DNA sequences. Annotated sequences were submitted to the EMBL database, and the general annotation tables produced served as a basis for our comparative description of the evolution, redundancy and function of the Hemiascomycete genomes described in other articles of this issue.
FEBS Letters | 2000
Claude Gaillardin; Guillemette Duchateau-Nguyen; Fredj Tekaia; Bertrand Llorente; Serge Casaregola; Claire Toffano-Nioche; Michel Aigle; François Artiguenave; Gaëlle Blandin; Monique Bolotin-Fukuhara; Elisabeth Bon; Jacky de Montigny; Bernard Dujon; Pascal Durrens; Andrée Lépingle; Alain Malpertuy; Cécile Neuvéglise; Odile Ozier-Kalogeropoulos; Serge Potier; William Saurin; Michel Termier; Micheline Wésolowski-Louvel; Patrick Wincker; Jean-Luc Souciet; Jean Weissenbach
We explored the biological diversity of hemiascomycetous yeasts using a set of 22 000 newly identified genes in 13 species through BLASTX searches. Genes without clear homologue in Saccharomyces cerevisiae appeared to be conserved in several species, suggesting that they were recently lost by S. cerevisiae. They often identified well‐known species‐specific traits. Cases of gene acquisition through horizontal transfer appeared to occur very rarely if at all. All identified genes were ascribed to functional classes. Functional classes were differently represented among species. Species classification by functional clustering roughly paralleled rDNA phylogeny. Unequal distribution of rapidly evolving, ascomycete‐specific, genes among species and functions was shown to contribute strongly to this clustering. A few cases of gene family amplification were documented, but no general correlation could be observed between functional differentiation of yeast species and variations of gene family sizes. Yeast biological diversity seems thus to result from limited species‐specific gene losses or duplications, and for a large part from rapid evolution of genes and regulatory factors dedicated to specific functions.
Molecular Genetics and Genomics | 1984
V. Contamine; Monique Bolotin-Fukuhara
SummaryWe have isolated cold-resistant revertants from a mitochondrial cold-sensitive mutation, cs909, localized in the 21S ribosomal RNA gene.Two types of revertants have been isolated: (1) strong revertants which were shown to be due to a single, nuclear, dominant suppressor; (2) weak revertants which are all due to the presence of a single, nuclear, recessive suppressor.The recessive suppressor, when separated from the mitochondrial mutation, itself confers a cold-sensitive phenotype, that is, there is a mutual suppression between the mitochondrial cold-sensitive mutation and the nuclear cold-sensitive mutation. The suppressor by itself produces modified ribosomes and therefore probably codes for an element of the mitochondrial ribosome such as a ribosomal protein.
Molecular Genetics and Genomics | 1987
Laura J. F. Hefta; Alfred S. Lewin; Bertrand Daignan-Fornier; Monique Bolotin-Fukuhara
SummaryYeast strain 990 carries a mutation mapping to the oli1 locus of the mitochondrial genome, the gene encoding ATPase subunit 9. DNA sequence analysis indicated a substitution of valine for alanine at residue 22 of the protein. The strain failed to grow on nonfermentable carbon sources such as glycerol at low temperature (20°C). At 28°C the strain grew on nonfermentable carbon sources and was resistant to the antibiotic oligomycin. ATPase activity in mitochondria isolated from 990 was reduced relative to the wild-type strain from which it was derived, but the residual activity was oligomycin resistant. Subunit 9 (the DCCD-binding proteolipid) from the mutant strain exhibited reduced mobility in SDS-polyacrylamide gels relative to the wild-type proteolipid. Ten revertant strains of 990 were analyzed. All restored the ability to grow on glycerol at 20°C. Mitotic segregation data showed that eight of the ten revertants were attributable to mitochondrial genetic events and two were caused by nuclear events since they appeared to be recessive nuclear suppressors. These nuclear mutations retained partial resistance to oligomycin and did not alter the electrophoretic behavior of subunit 9 or any other ATPase subunit. When mitochondrial DNA from each of the revertant strains was hybridized with an oligonucleotide probe covering the oli1 mutation, seven of the mitochondrial revertants were found to be true revertants and one a second mutation at the site of the original 990 mutation. The oli1 gene from this strain contained a substitution of glycine for valine at residue 22. The proteolipid isolated from this strain had increased electrophoretic mobility relative to the wild-type proteolipid.
Journal of Bacteriology | 1996
Van‐Dinh Dang; C Bohn; Monique Bolotin-Fukuhara; Bertrand Daignan-Fornier
Yeast | 1994
Van‐Dinh Dang; Michèle Valens; Monique Bolotin-Fukuhara; Bertrand Daignan-Fornier