Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monique Deu is active.

Publication


Featured researches published by Monique Deu.


Theoretical and Applied Genetics | 1997

Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid

Philippe Dufour; Monique Deu; Laurent Grivet; Angélique D'Hont; Florence Paulet; André Bouet; Claire Lanaud; Jean-Christophe Glaszmann; Perla Hamon

Abstract A sorghum composite linkage map was constructed with two recombinant inbred line populations using heterologous probes already mapped on maize and sugarcane. This map includes 199 loci revealed by 188 probes and distributed on 13 linkage groups. A comparison based on 84 common probes was performed between the sorghum composite map and a map of a sugarcane (Saccharum spp.) cultivar being developed and presently comprising 10 tentative linkage groups. A straight synteny was observed for 2 pairs of linkage groups; in two cases, 1 sorghum linkage group corresponded to 2 or 3 sugarcane linkage groups, respectively; in two cases 1 sugarcane link- age group corresponded to 2 separate sorghum linkage groups; for 2 sorghum linkage groups, no complete correspondance was found in the sugarcane genome. In most cases loci appeared to be colinear between homoeologous chromosomal segments in sorghum and sugarcane. These results are discussed in relation to published data on sorghum genomic maps, with specific reference to the genetic organization of sugarcane cultivars, and they, illustrate how investigations on relatively simple diploid genomes as sorghum will facilitate the mapping of related polyploid species such as sugarcane.


Theoretical and Applied Genetics | 1999

Towards a saturated sorghum map using RFLP and AFLP markers

Karine Boivin; Monique Deu; Jean-François Rami; Gilles Trouche; Perla Hamon

Abstract A near-saturated sorghum genetic linkage map was produced using RFLP, AFLP and morphological markers. First a composite, essentially RFLP-based genetic linkage map was obtained from analyses of two recombinant inbred populations. This map includes 343 loci for 11 linkage groups spanning 1352 cM. Since this map was constructed with many previously mapped heterologous probes, it offers a good basis for synteny studies. Separately, an AFLP map was obtained from the analysis of 168 bands revealed from 12 primer pair combinations. It includes 137 loci for 11 linkage groups spanning 849 cM. Taking into account the different data sets, we constructed a combined genetic linkage map including 443 loci spanning 1899 cM. Two main features are to be noted: (1) the distribution of AFLPs along the genome is not uniform; (2) an important stretching of the former core map is induced after adding the AFLPs.


Theoretical and Applied Genetics | 2006

Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers

Cédric Mariac; Viviane Luong; Issoufou Kapran; Aïssata Mamadou; Fabrice Sagnard; Monique Deu; Jacques Chantereau; Bruno Gérard; Jupiter Ndjeunga; Gilles Bezançon; Jean Louis Pham; Yves Vigouroux

Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.


Theoretical and Applied Genetics | 1994

RFLP diversity in cultivated sorghum in relation to racial differentiation

Monique Deu; D. Gonzalez-de-Leon; Jean-Christophe Glaszmann; I. Degremont; Jacques Chantereau; Claire Lanaud; Perla Hamon

Careful assessment of the comparative diversity for molecular markers and for potentially-useful morpho-agronomic traits is paramount to the analysis of a genome through the mapping of favorable genes. Sorghum (Sorghum bicolor ssp.bicolor) varieties are traditionally classified into five races on the basis of morphological traits, especially panicle and grain traits. Isozyme diversity has provided a new insight into genetic diversity, and showed a marked geographic structure. We performed RFLP analysis on 94 varieties, chosen to represent the main cross combinations (race × geographic origin), using 35 maize probes that detect polymorphism with at least one of the two restriction enzymesHindIII andXbaI. A total of 50 polymorphic probe-enzyme combinations yielded 158 polymorphic bands. The bicolor race appeared highly variable and included many rare markers. Among the other races multivariate analysis of the data differentiated six clusters corresponding, by decreasing magnitude of divergence, to: the margaritiferum types (a sub-race of race guinea); the guinea forms from western Africa; race caudatum; race durra; race kafir; and the guinea forms from southern Africa.The apparent geographic differentiation was related to the contrasting distribution of these races and to a higher similarity between races localized in southern Africa. The data agree with the current hypotheses on sorghum domestication but reveal associations between neutral markers and traits probably highly subjected to human selection. Whether such associations will be observed with other useful traits, and to what extent they are maintained by genetic linkage, is worth exploring.


Genetics | 2008

Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n ~ 12x ~ 115)

Loïc Le Cunff; Olivier Garsmeur; Louis Marie Raboin; Jérome Pauquet; Hugues Telismart; Athiappan Selvi; Laurent Grivet; Romain Philippe; Dilara Begum; Monique Deu; Laurent Costet; Rod A. Wing; Jean Christophe Glaszmann; Angélique D'Hont

The genome of modern sugarcane cultivars is highly polyploid (∼12x), aneuploid, of interspecific origin, and contains 10 Gb of DNA. Its size and complexity represent a major challenge for the isolation of agronomically important genes. Here we report on the first attempt to isolate a gene from sugarcane by map-based cloning, targeting a durable major rust resistance gene (Bru1). We describe the genomic strategies that we have developed to overcome constraints associated with high polyploidy in the successive steps of map-based cloning approaches, including diploid/polyploid syntenic shuttle mapping with two model diploid species (sorghum and rice) and haplotype-specific chromosome walking. Their applications allowed us (i) to develop a high-resolution map including markers at 0.28 and 0.14 cM on both sides and 13 markers cosegregating with Bru1 and (ii) to develop a physical map of the target haplotype that still includes two gaps at this stage due to the discovery of an insertion specific to this haplotype. These approaches will pave the way for the development of future map-based cloning approaches for sugarcane and other complex polyploid species.


Theoretical and Applied Genetics | 2000

Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures. B. Using molecular markers.

Cécile Grenier; Monique Deu; Stephen Kresovich; P J Bramel-Cox; Perla Hamon

Abstract The large size of the sorghum [Sorghum bi-color (L.) Moench] landrace collection maintained by ICRISAT lead to the establishment of a core collection. Thus, three subsets of around 200 accessions were established from: (1) a random sampling after stratification of the entire landrace collection (L), (2) a selective sampling based on quantitative characters (PCS), and (3) a selection based on the geographical origin of landraces and the traits under farmers’ selection (T). An assessment was done of the genetic diversity retained by each sampling strategy using the polymorphisms at 15 microsatellite loci. The landraces of each subset were genotyped with three multiplex polymerase chain reactions (PCRs) of five fluorescent primer-pairs each with semi-automated allele sizing. The average allelic richness for each subset was equivalent (16.1, 16.3 and 15.4 alleles per locus for the subsets PCS, L, and T, respectively). The average genetic diversity was also comparable for the three subsets (0.81, 0.77 and 0.80 for the subsets PCS, L, and T, respectively). Allelic frequency distribution for each subset was compared with a chi-square test but few significant differences were observed. A high percentage of rare alleles (71 to 76% of 206 total rare alleles) was maintained in the three subsets. The global molecular diversity retained in each subset was not affected by a sampling procedure based upon phenotypic characters.


Theoretical and Applied Genetics | 2000

Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene

Carole Asnaghi; Florence Paulet; Claudia Kaye; Laurent Grivet; Monique Deu; Jean-Christophe Glaszmann; Angélique D'Hont

Abstract A major rust resistance gene has been identified in a self-progeny of the sugarcane cultivar R570. Until now, this gene was known to be linked to a marker revealed by the sugarcane probe CDSR29 but unassigned to any linkage group of the current genetic map. We used synteny relationships between sugarcane and three other grasses in an attempt to saturate the region around this rust resistance gene. Comparison of sugarcane, sorghum, maize and rice genetic maps led to the identification of homoeologous chromosome segments at the extremity of sorghum linkage group D, rice linkage group 2, maize linkage group 4 and in the centromeric region of maize linkage group 5. One hundred and eighty-four heterologous probes were selected and tested for cross-hybridization with sugarcane DNA; 106 produced a good hybridization signal and were hybridized on 88 individuals of the R570 selfed progeny. Two hundred and seventeen single-dose markers were added to the R570 genetic map, of which 66% mapped to linkage group VII, together with the rust resistance gene. This gene has now been mapped to the end of a co-segregating group consisting of 19 RFLP markers. None of the mapped loci were located closer to the gene than CDSR29. The gene thus appears to reside at the edge of a ’’synteny cluster’’ used to describe the different grass genomes.


Theoretical and Applied Genetics | 1996

Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane

Philippe Dufour; Laurent Grivet; Angélique D'Hont; Monique Deu; Gilles Trouche; Jean-Christophe Glaszmann; Perla Hamon

Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae.


PLOS ONE | 2013

Massive Sorghum Collection Genotyped with SSR Markers to Enhance Use of Global Genetic Resources

Claire Billot; Punna Ramu; Sophie Bouchet; Jacques Chantereau; Monique Deu; Laëtitia Gardes; Jean-Louis Noyer; Jean-François Rami; Ronan Rivallan; Yu Li; Ping Lu; Tianyu Wang; R. T. Folkertsma; Elizabeth Arnaud; Hari D. Upadhyaya; Jean Christophe Glaszmann; C. Thomas Hash

Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity.


PLOS ONE | 2012

Genetic structure, linkage disequilibrium and signature of selection in sorghum: Lessons from physically anchored dart markers

Sophie Bouchet; David Pot; Monique Deu; Jean-François Rami; Claire Billot; Xavier Perrier; Ronan Rivallan; Laëtitia Gardes; Ling Xia; Peter Wenzl; Andrzej Kilian; Jean-Christophe Glaszmann

Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod.

Collaboration


Dive into the Monique Deu's collaboration.

Top Co-Authors

Avatar

Jean-Christophe Glaszmann

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Jacques Chantereau

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Jean-François Rami

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Perla Hamon

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Fabrice Sagnard

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Claire Billot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Adeline Barnaud

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Brigitte Courtois

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Gilles Bezançon

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Laurent Grivet

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge