Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monique F. Stins is active.

Publication


Featured researches published by Monique F. Stins.


Nature Medicine | 2006

Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity

Camie W. Chan; Emily Crafton; Hong Ni Fan; James Flook; Kiyoshi Yoshimura; Mario Skarica; Dirk G. Brockstedt; Thomas W. Dubensky; Monique F. Stins; Lewis L. Lanier; Drew M. Pardoll; Franck Housseau

Natural killer (NK) cells and dendritic cells (DCs) are, respectively, central components of innate and adaptive immune responses. We describe here a third DC lineage, termed interferon-producing killer DCs (IKDCs), distinct from conventional DCs and plasmacytoid DCs and with the molecular expression profile of both NK cells and DCs. They produce substantial amounts of type I interferons (IFN) and interleukin (IL)-12 or IFN-γ, depending on activation stimuli. Upon stimulation with CpG oligodeoxynucleotides, ligands for Toll-like receptor (TLR)-9, IKDCs kill typical NK target cells using NK-activating receptors. Their cytolytic capacity subsequently diminishes, associated with the loss of NKG2D receptor (also known as Klrk1) and its adaptors, Dap10 and Dap12. As cytotoxicity is lost, DC-like antigen-presenting activity is gained, associated with upregulation of surface major histocompatibility complex class II (MHC II) and costimulatory molecules, which formally distinguish them from classical NK cells. In vivo, splenic IKDCs preferentially show NK function and, upon systemic infection, migrate to lymph nodes, where they primarily show antigen-presenting cell activity. By virtue of their capacity to kill target cells, followed by antigen presentation, IKDCs provide a link between innate and adaptive immunity.


Journal of Neuroimmunology | 1997

Selective expression of adhesion molecules on human brain microvascular endothelial cells

Monique F. Stins; Floyd H. Gilles; Kwang Sik Kim

Human microvascular endothelial cells were isolated from childrens brain and examined for their morphological characteristics and upregulation of cell adhesion molecules in response to TNF alpha. Our human brain microvascular endothelial cells (HBMEC) were positive for factor VIII-Rag, carbonic anhydrase IV, Ulex Europeus Agglutinin I, took up fluorescently labeled acetylated low density lipoprotein and expressed gamma glutamyl transpeptidase, demonstrating their brain endothelial cell characteristics. Upon treatment with TNF alpha. VCAM and ICAM but little ELAM was expressed on HBMEC, while VCAM, ICAM and ELAM were clearly evident on HUVEC. This selective expression of cell adhesion molecules was also demonstrated by in situ stimulation of brain tissues. In conclusion, microvascular endothelial cells from childrens brains display selective expression of cell adhesion molecules, which differ from macrovascular endothelial cells. This may have consequences for leukocyte trafficking into the central nervous system.


American Journal of Pathology | 1999

Microglial and Astrocyte Chemokines Regulate Monocyte Migration through the Blood-Brain Barrier in Human Immunodeficiency Virus-1 Encephalitis

Yuri Persidsky; Anuja Ghorpade; J. Rasmussen; Jenae Limoges; Xiao Juan Liu; Monique F. Stins; Milan Fiala; Dennis Way; Kwang Sik Kim; Marlys H. Witte; Martin E. Weinand; Leeroy Carhart; Howard E. Gendelman

The numbers of immune-activated brain mononuclear phagocytes (MPs) affect the progression of human immunodeficiency virus (HIV)-1-associated dementia (HAD). Such MPs originate, in measure, from a pool of circulating monocytes. To address the mechanism(s) for monocyte penetration across the blood-brain barrier (BBB), we performed cross-validating laboratory, animal model, and human brain tissue investigations into HAD pathogenesis. First, an artificial BBB was constructed in which human brain microvascular endothelial and glial cells-astrocytes, microglia, and/or monocyte-derived macrophages (MDM)-were placed on opposite sides of a matrix-coated porous membrane. Second, a SCID mouse model of HIV-1 encephalitis (HIVE) was used to determine in vivo monocyte blood-to-brain migration. Third, immunohistochemical analyses of human HIVE tissue defined the relationships between astrogliosis, activation of microglia, virus infection, monocyte brain infiltration, and beta-chemokine expression. The results, taken together, showed that HIV-1-infected microglia increased monocyte migration through an artificial BBB 2 to 3.5 times more than replicate numbers of MDM. In the HIVE SCID mice, a marked accumulation of murine MDM was found in areas surrounding virus-infected human microglia but not MDM. For human HIVE, microglial activation and virus infection correlated with astrogliosis, monocyte transendothelial migration, and beta-chemokine expression. Pure cultures of virus-infected and activated microglia or astrocytes exposed to microglial conditioned media produced significant quantities of beta-chemokines. We conclude that microglial activation alone and/or through its interactions with astrocytes induces beta-chemokine-mediated monocyte migration in HAD.


Journal of Clinical Investigation | 1998

Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer.

J. B. Mackic; Monique F. Stins; J. McComb; Miguel Calero; Jorge Ghiso; Kwang Sik Kim; Shirley ShiDu Yan; David M. Stern; Ann Marie Schmidt; B. Frangione; Berislav V. Zlokovic

A soluble monomeric form of Alzheimers amyloid-beta (1-40) peptide (sAbeta1-40) is present in the circulation and could contribute to neurotoxicity if it crosses the brain capillary endothelium, which comprises the blood-brain barrier (BBB) in vivo. This study characterizes endothelial binding and transcytosis of a synthetic peptide homologous to human sAbeta1-40 using an in vitro model of human BBB. 125I-sAbeta1-40 binding to the brain microvascular endothelial cell monolayer was time dependent, polarized to the apical side, and saturable with high- and low-affinity dissociation constants of 7.8+/-1.2 and 52.8+/-6.2 nM, respectively. Binding of 125I-sAbeta1-40 was inhibited by anti-RAGE (receptor for advanced glycation end products) antibody (63%) and by acetylated low density lipoproteins (33%). Consistent with these data, transfected cultured cells overexpressing RAGE or macrophage scavenger receptor (SR), type A, displayed binding and internalization of 125I-sAbeta1-40. The internalized peptide remains intact > 94%. Transcytosis of 125I-sAbeta1-40 was time and temperature dependent, asymmetrical from the apical to basolateral side, saturable with a Michaelis constant of 45+/-9 nM, and partially sensitive to RAGE blockade (36%) but not to SR blockade. We conclude that RAGE and SR mediate binding of sAbeta1-40 at the apical side of human BBB, and that RAGE is also involved in sAbeta1-40 transcytosis.


International Journal of Cancer | 2002

αv-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin

Takashi Taga; Atsushi Suzuki; Ignacio Gonzalez-Gomez; Floyd H. Gilles; Monique F. Stins; Hiroyuki Shimada; Lora Barsky; Kenneth I. Weinberg; Walter E. Laug

Orthotopic brain tumor growth is inhibited in athymic mice by the daily systemic administration of the αv‐integrin antagonist EMD 121974. This compound, a cyclic RGD‐penta‐peptide, is a potent inhibitor of angiogenesis, which induces apoptosis of growing endothelial cells through inhibition of their αv‐integrin interaction with the matrix proteins vitronectin and tenascin. Here we show that EMD 121974 also induces apoptosis in the αv‐integrin‐expressing tumor cell lines U87 MG and DAOY by detaching them from vitronectin and tenascin, matrix proteins known to be essential for brain tumor growth and invasion. These matrix proteins are shown to be produced by the brain tumor cells in vitro and in vivo. Furthermore, only tumor cells expressing αv‐integrins responded to the treatment with EMD 121974, after xenotransplantation into the forebrain of nude mice, supporting the importance of tumor cell‐matrix interactions in tumor cell survival in the brain. Thus, the αv‐antagonist EMD 121974 suppresses brain tumor growth through induction of apoptosis in both brain capillary and brain tumor cells by preventing their interaction with the matrix proteins vitronectin and tenascin. The dual action of this peptide explains its potent growth suppression of orthotopically transplanted brain tumors.


Infection and Immunity | 2004

Cryptococcal Yeast Cells Invade the Central Nervous System via Transcellular Penetration of the Blood-Brain Barrier

Yun C. Chang; Monique F. Stins; Michael J. McCaffery; Georgina F. Miller; Dan R. Pare; Tapen Dam; Maneesh Paul-Satyasee; Kwang Sik Kim; Kyung J. Kwon-Chung

ABSTRACT Cryptococcal meningoencephalitis develops as a result of hematogenous dissemination of inhaled Cryptococcus neoformans from the lung to the brain. The mechanism(s) by which C. neoformans crosses the blood-brain barrier (BBB) is a key unresolved issue in cryptococcosis. We used both an in vivo mouse model and an in vitro model of the human BBB to investigate the cryptococcal association with and traversal of the BBB. Exposure of human brain microvascular endothelial cells (HBMEC) to C. neoformans triggered the formation of microvillus-like membrane protrusions within 15 to 30 min. Yeast cells of C. neoformans adhered to and were internalized by the HBMEC, and they crossed the HBMEC monolayers via a transcellular pathway without affecting the monolayer integrity. The histopathology of mouse brains obtained after intravenous injection of C. neoformans showed that the yeast cells either were associated with endothelial cells or escaped from the brain capillary vessels into the neuropil by 3 h. C. neoformans was found in the brain parenchyma away from the vessels by 22 h. Association of C. neoformans with the choroid plexus, however, was not detected during up to 10 days of observation. Our findings indicate that C. neoformans cells invade the central nervous system by transcellular crossing of the endothelium of the BBB.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons

Shuzhen Guo; Woo Jean Kim; Josephine Lok; Sun Ryung Lee; Elaine Besancon; Bing Hao Luo; Monique F. Stins; Xiaoying Wang; Shoukat Dedhar; Eng H. Lo

The neurovascular unit is an emerging concept that emphasizes homeostatic interactions between endothelium and cerebral parenchyma. Here, we show that cerebral endothelium are not just inert tubes for delivering blood, but they also secrete trophic factors that can be directly neuroprotective. Conditioned media from cerebral endothelial cells broadly protects neurons against oxygen-glucose deprivation, oxidative damage, endoplasmic reticulum stress, hypoxia, and amyloid neurotoxicity. This phenomenon is largely mediated by endothelial-produced brain-derived neurotrophic factor (BDNF) because filtering endothelial-conditioned media with TrkB-Fc eliminates the neuroprotective effect. Endothelial production of BDNF is sustained by β-1 integrin and integrin-linked kinase (ILK) signaling. Noncytotoxic levels of oxidative stress disrupts ILK signaling and reduces endothelial levels of neuroprotective BDNF. These data suggest that cerebral endothelium provides a critical source of homeostatic support for neurons. Targeting these signals of matrix and trophic coupling between endothelium and neurons may provide new therapeutic opportunities for stroke and other CNS disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells

Marion Avril; Abhai K. Tripathi; Andrew J. Brazier; Cheryl Andisi; Joel H. Janes; Vijaya L. Soma; David J. Sullivan; Peter C. Bull; Monique F. Stins; Joseph D. Smith

Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, but specific interactions involved in cerebral homing of infected erythrocytes (IEs) are poorly understood. In this study, P. falciparum-IEs were characterized for binding to primary human brain microvascular endothelial cells (HBMECs). Before selection, CD36 or ICAM-1–binding parasites exhibited punctate binding to a subpopulation of HBMECs and binding was CD36 dependent. Panning of IEs on HBMECs led to a more dispersed binding phenotype and the selection of three var genes, including two that encode the tandem domain cassette 8 (DC8) and were non-CD36 binders. Multiple domains in the DC8 cassette bound to brain endothelium and the cysteine-rich interdomain region 1 inhibited binding of P. falciparum-IEs by 50%, highlighting a key role for the DC8 cassette in cerebral binding. It is mysterious how deadly binding variants are maintained in the parasite population. Clonal parasite lines expressing the two brain-adherent DC8-var genes did not bind to any of the known microvascular receptors, indicating unique receptors are involved in cerebral binding. They could also adhere to brain, lung, dermis, and heart endothelial cells, suggesting cerebral binding variants may have alternative sequestration sites. Furthermore, young African children with CM or nonsevere control cases had antibodies to HBMEC-selected parasites, indicating they had been exposed to related variants during childhood infections. This analysis shows that specific P. falciparum erythrocyte membrane protein 1 types are linked to cerebral binding and suggests a potential mechanism by which individuals may build up immunity to severe disease, in the absence of CM.


Infection and Immunity | 2001

Traversal of Candida albicans across Human Blood-Brain Barrier In Vitro

Ambrose Jong; Monique F. Stins; Sheng-He Huang; Steven H. M. Chen; Kwang Sik Kim

ABSTRACT Candida albicans is an opportunistic pathogen, which primarily affects neonates and immunocompromised individuals. The pathogen can invade the central nervous system, resulting in meningitis. At present, the pathogenesis of C. albicansmeningitis is unclear. We used an in vitro model of the human blood-brain barrier to investigate the interaction(s) of C. albicans with human brain microvascular endothelial cells (BMEC). Binding of C. albicans to human BMEC was time and inoculum dependent. Invasion of C. albicans into human BMEC was demonstrated by using an enzyme-linked immunosorbent assay based on fluorescent staining of C. albicans with calcoflour. In contrast, avirulent Candida mutant strains and nonpathogenic yeast Saccharomyces cerevisiae were not able to bind and invade human BMEC. Morphological studies revealed that on association with human BMEC, C. albicans formed germ tubes and was able to bud intracellularly. Transmission electron microscopy showed various stages of C. albicans interactions with human BMEC, e.g., pseudopod-like structures on human BMEC membrane and intracellular vacuole-like structures retaining C. albicans. Of interest, C. albicans was able to bud and develop pseudohyphae inside human BMEC without apparent morphological changes of the host cells. In addition, C. albicans penetrates through human BMEC monolayers without a detectable change in transendothelial electrical resistance and inulin permeability. This is the first demonstration that C. albicans is able to adhere, invade, and transcytose across human BMEC without affecting monolayer integrity. A complete understanding of the interaction(s) of C. albicans with human BMEC should contribute to the understanding of the pathogenic mechanism(s) ofC. albicans meningitis.


Molecular Medicine | 1999

CXC and CC chemokine receptors on coronary and brain endothelia.

Omri Berger; Xiaohu Gan; Chandrasekhar Gujuluva; Alan R. Burns; Girija Sulur; Monique F. Stins; Dennis Way; Marlys Witte; Martin E. Weinand; Jonathan W. Said; Kwang-Sik Kim; Dennis D. Taub; Michael C. Graves; Milan Fiala

BackgroundChemokine receptors on leukocytes play a key role in inflammation and HIV-1 infection. Chemokine receptors on endothelia may serve an important role in HIV-1 tissue invasion and angiogenesis.Materials and MethodsThe expression of chemokine receptors in human brain microvascular endothelial cells (BMVEC) and coronary artery endothelial cells (CAEC) in vitro and cryostat sections of the heart tissue was determined by light and confocal microscopy and flow cytometry with monoclonal antibodies. Chemotaxis of endothelia by CC chemokines was evaluated in a transmigration assay.ResultsIn BMVEC, the chemokine receptors CCR3 and CXCR4 showed the strongest expression. CXCR4 was localized by confocal microscopy to both the cytoplasm and the plasma membrane of BMVEC. In CAEC, CXCR4 demonstrated a strong expression with predominantly periplasmic localization. CCR5 expression was detected both in BMVEC and CAEC but at a lower level. Human umbilical cord endothelial cells (HUVEC) expressed strongly CXCR4 but only weakly CCR3 and CCR5. Two additional CC chemokines, CCR2A and CCR4, were detected in BMVEC and CAEC by immunostaining. Immunocytochemistry of the heart tissues with monoclonal antibodies revealed a high expression of CXCR4 and CCR2A and a low expression of CCR3 and CCR5 on coronary vessel endothelia. Coronary endothelia showed in vitro a strong chemotactic response to the CC chemokines RANTES, MlP-1α, and MIP-1β.ConclusionsThe endothelia isolated from the brain display strongly both the CCR3 and CXCR4 HIV-1 coreceptors, whereas the coronary endothelia express strongly only the CXCR4 coreceptor. CCR5 is expressed at a lower level in both endothelia. The differential display of CCR3 on the brain and coronary endothelia could be significant with respect to the differential susceptibility of the heart and the brain to HIV-1 invasion. In addition, CCR2A is strongly expressed in the heart endothelium. All of the above chemokine receptors could play a role in endothelial migration and repair.

Collaboration


Dive into the Monique F. Stins's collaboration.

Top Co-Authors

Avatar

Kwang Sik Kim

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Carol A. Wass

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Milan Fiala

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheng He Huang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Berislav V. Zlokovic

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francescopaolo Di Cello

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge