Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monique M. Ryan is active.

Publication


Featured researches published by Monique M. Ryan.


Annals of Neurology | 2008

De novo LMNA mutations cause a new form of congenital muscular dystrophy

Susana Quijano-Roy; Blaise Mbieleu; Carsten G. Bönnemann; Pierre-Yves Jeannet; J. Colomer; Nigel F. Clarke; Jean‐Marie Cuisset; Helen Roper; Linda De Meirleir; Adele D'Amico; Rabah Ben Yaou; A. Nascimento; Annie Barois; Laurence Demay; Enrico Bertini; Ana Ferreiro; C. Sewry; Norma B. Romero; Monique M. Ryan; Francesco Muntoni; Pascale Guicheney; Pascale Richard; Gisèle Bonne; Brigitte Estournet

To describe a new entity of congenital muscular dystrophies caused by de novo LMNA mutations.


Annals of Neurology | 2001

Nemaline myopathy: A clinical study of 143 cases

Monique M. Ryan; Christina Schnell; Corinne D. Strickland; Lloyd K. Shield; Graeme Morgan; Susan T. Iannaccone; Nigel G. Laing; Alan H. Beggs; Kathryn N. North

We report 143 Australian and North American cases of primary nemaline myopathy. As classified by the European Neuromuscular Centre guidelines, 23 patients had severe congenital, 29 intermediate congenital, 66 typical congenital, 19 childhood‐onset, and 6 adult‐onset nemaline myopathy. Inheritance was autosomal recessive in 29 patients, autosomal dominant in 41, sporadic in 72, and indeterminate in 1. Twenty‐two patients had skeletal muscle actin mutations and 4 had mutations in the α‐tropomyosinSLOW gene. Obstetric complications occurred in 49 cases. Seventy‐five patients had significant respiratory disease during the first year of life, and 79 had feeding difficulties. Atypical features in a minority of cases included arthrogryposis, central nervous system involvement, and congenital fractures. Progressive distal weakness developed in a minority of patients. Thirty patients died, the majority during the first 12 months of life. All deaths were due to respiratory insufficiency, which was frequently underrecognized in older patients. Arthrogryposis, neonatal respiratory failure, and failure to achieve early motor milestones were associated with early mortality. Morbidity from respiratory tract infections and feeding difficulties frequently diminished with increasing age. Aggressive early management is warranted in most cases of congenital nemaline myopathy.


Muscle & Nerve | 2014

Ataluren treatment of patients with nonsense mutation dystrophinopathy

K. Bushby; R. Finkel; Brenda Wong; Richard J. Barohn; Craig Campbell; Giacomo P. Comi; Anne M. Connolly; John W. Day; Kevin M. Flanigan; Nathalie Goemans; Kristi J. Jones; Eugenio Mercuri; R. Quinlivan; James B. Renfroe; Barry S. Russman; Monique M. Ryan; Mar Tulinius; Thomas Voit; Steven A. Moore; H. Lee Sweeney; Richard T. Abresch; Kim L. Coleman; Michelle Eagle; Julaine Florence; Eduard Gappmaier; Allan M. Glanzman; Erik Henricson; Jay Barth; Gary L. Elfring; A. Reha

Introduction: Dystrophinopathy is a rare, severe muscle disorder, and nonsense mutations are found in 13% of cases. Ataluren was developed to enable ribosomal readthrough of premature stop codons in nonsense mutation (nm) genetic disorders. Methods: Randomized, double‐blind, placebo‐controlled study; males ≥5 years with nm‐dystrophinopathy received study drug orally 3 times daily, ataluren 10, 10, 20 mg/kg (N = 57); ataluren 20, 20, 40 mg/kg (N = 60); or placebo (N = 57) for 48 weeks. The primary endpoint was change in 6‐Minute Walk Distance (6MWD) at Week 48. Results: Ataluren was generally well tolerated. The primary endpoint favored ataluren 10, 10, 20 mg/kg versus placebo; the week 48 6MWD Δ = 31.3 meters, post hoc P = 0.056. Secondary endpoints (timed function tests) showed meaningful differences between ataluren 10, 10, 20 mg/kg, and placebo. Conclusions: As the first investigational new drug targeting the underlying cause of nm‐dystrophinopathy, ataluren offers promise as a treatment for this orphan genetic disorder with high unmet medical need. Muscle Nerve 50: 477–487, 2014


Nature Genetics | 2012

Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration

Jijun Wan; Michael Yourshaw; Hafsa Mamsa; Sabine Rudnik-Schöneborn; Manoj P. Menezes; Ji Eun Hong; Derek W Leong; Jan Senderek; Michael S Salman; David Chitayat; Pavel Seeman; Arpad von Moers; Luitgard Graul-Neumann; Andrew J. Kornberg; Manuel Castro-Gago; María-Jesús Sobrido; Masafumi Sanefuji; Perry B. Shieh; Noriko Salamon; Ronald C. Kim; Harry V. Vinters; Zugen Chen; Klaus Zerres; Monique M. Ryan; Stanley F. Nelson; Joanna C. Jen

RNA exosomes are multi-subunit complexes conserved throughout evolution and are emerging as the major cellular machinery for processing, surveillance and turnover of a diverse spectrum of coding and noncoding RNA substrates essential for viability. By exome sequencing, we discovered recessive mutations in EXOSC3 (encoding exosome component 3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 (PCH1; MIM 607596). We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment, resulting in small brain size and poor motility, reminiscent of human clinical features, and these defects were largely rescued by co-injection with wild-type but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome core component gene that is responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.


American Journal of Human Genetics | 2001

Nemaline Myopathy Caused by Mutations in the Muscle α-Skeletal-Actin Gene

Biljana Ilkovski; Sandra T. Cooper; Kristen J. Nowak; Monique M. Ryan; Nan Yang; Christina Schnell; Hayley J. Durling; Laurence Roddick; Ian Wilkinson; Andrew J. Kornberg; Kevin Collins; Geoff Wallace; Peter Gunning; Edna C. Hardeman; Nigel G. Laing; Kathryn N. North

Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder characterized by muscle weakness and the presence of nemaline bodies (rods) in skeletal muscle. Disease-causing mutations have been reported in five genes, each encoding a protein component of the sarcomeric thin filament. Recently, we identified mutations in the muscle α-skeletal-actin gene (ACTA1) in a subset of patients with NM. In the present study, we evaluated a new series of 35 patients with NM. We identified five novel missense mutations in ACTA1, which suggested that mutations in muscle α-skeletal actin account for the disease in ∼15% of patients with NM. The mutations appeared de novo and represent new dominant mutations. One proband subsequently had two affected children, a result consistent with autosomal dominant transmission. The seven patients exhibited marked clinical variability, ranging from severe congenital-onset weakness, with death from respiratory failure during the 1st year of life, to a mild childhood-onset myopathy, with survival into adulthood. There was marked variation in both age at onset and clinical severity in the three affected members of one family. Common pathological features included abnormal fiber type differentiation, glycogen accumulation, myofibrillar disruption, and “whorling” of actin thin filaments. The percentage of fibers with rods did not correlate with clinical severity; however, the severe, lethal phenotype was associated with both severe, generalized disorganization of sarcomeric structure and abnormal localization of sarcomeric actin. The marked variability, in clinical phenotype, among patients with different mutations in ACTA1 suggests that both the site of the mutation and the nature of the amino acid change have differential effects on thin-filament formation and protein-protein interactions. The intrafamilial variability suggests that α-actin genotype is not the sole determinant of phenotype.


Neurology | 2003

Clinical course correlates poorly with muscle pathology in nemaline myopathy

Monique M. Ryan; Biljana Ilkovski; C. D. Strickland; C. Schnell; Despoina Sanoudou; C. Midgett; R. Houston; D. Muirhead; X. Dennett; Lloyd K. Shield; U. De Girolami; Susan T. Iannaccone; Nigel G. Laing; Kathryn N. North; Alan H. Beggs

Objective: To report pathologic findings in 124 Australian and North American cases of primary nemaline myopathy. Methods: Results of 164 muscle biopsies from 124 Australian and North American patients with primary nemaline myopathy were reviewed, including biopsies from 19 patients with nemaline myopathy due to α-actin (ACTA1) mutations and three with mutations in α-tropomyosinSLOW (TPM3). For each biopsy rod number per fiber, percentage of fibers with rods, fiber-type distribution of rods, and presence or absence of intranuclear rods were documented. Results: Rods were present in all skeletal muscles and diagnosis was possible at all ages. Most biopsies contained nemaline bodies in more than 50% of fibers, although rods were seen only on electron microscopy in 10 patients. Rod numbers and localization correlated poorly with clinical severity. Frequent findings included internal nuclei and increased fiber size variation, type 1 fiber predominance and atrophy, and altered expression of fiber type specific proteins. Marked sarcomeric disruption, increased glycogen deposition, and intranuclear rods were associated with more severe clinical phenotypes. Serial biopsies showed progressive fiber size variation and increasing numbers of rods with time. Pathologic findings varied widely in families with multiple affected members. Conclusions: Very numerous nemaline bodies, glycogen accumulation, and marked sarcomeric disruption were common in nemaline myopathy associated with mutations in skeletal α-actin. Nemaline myopathy due to mutations in α-tropomyosinSLOW was characterized by preferential rod formation in, and atrophy of, type 1 fibers. Light microscopic features of nemaline myopathy correlate poorly with disease course. Electron microscopy may correlate better with disease severity and genotype.


Lancet Neurology | 2009

Ascorbic acid for Charcot-Marie-Tooth disease type 1A in children: a randomised, double-blind, placebo-controlled, safety and efficacy trial.

Joshua Burns; Robert Ouvrier; Eppie M. Yiu; Pathma D. Joseph; Andrew J. Kornberg; Michael Fahey; Monique M. Ryan

BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited nerve disorder. CMT1A is characterised by peripheral nerve demyelination, weakness, and impaired motor function and is caused by the duplication of PMP22, the gene that encodes peripheral myelin protein 22. High-dose ascorbic acid has been shown to have remyelinating potential and to correct the phenotype of a transgenic mouse model of CMT1A by decreasing expression of PMP22. We tested the efficacy and safety of ascorbic acid supplementation in children with CMT1A. METHODS This 12-month, randomised, double-blind, placebo-controlled trial undertaken between June, 2007, and December, 2008, assessed high-dose oral ascorbic acid (about 30 mg/kg/day) in 81 children with CMT1A (2-16 years). Randomisation was done on a 1:1 ratio by a computer-generated algorithm. All investigators and participants were blinded to treatment allocation with the exception of the trial pharmacist. The primary efficacy outcome was median nerve motor conduction velocity (m/s) at 12 months. Secondary outcomes were foot and hand strength, motor function, walking ability, and quality of life. Compliance was measured by plasma ascorbic acid concentration, pill count, and medication diary entries. Analysis was by intention to treat. This trial is registered with the Australian New Zealand Clinical Trials Registry, Number 12606000481572. FINDINGS 81 children were randomly assigned to receive high-dose ascorbic acid (n=42) or placebo (n=39). 80 children completed 12 months of treatment. The ascorbic acid group had a small, non-significant increase in median nerve motor conduction velocity compared with the placebo group (adjusted mean difference 1.7 m/s, 95% CI -0.1 to 3.4; p=0.06). There was no measurable effect of ascorbic acid on neurophysiological, strength, function, or quality of life outcomes. Two children in the ascorbic acid group and four children in the placebo group reported gastrointestinal symptoms. There were no serious adverse events. INTERPRETATION 12 months of treatment with high-dose ascorbic acid was safe and well tolerated but none of the expected efficacy endpoints were reached.


Brain | 2010

Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis

M.A.A.P. Willemsen; Marcel M. Verbeek; Erik-Jan Kamsteeg; Johanneke F. de Rijk-van Andel; A. Aeby; Nenad Blau; Alberto Burlina; Maria Anna Donati; B. Geurtz; Padraic J. Grattan-Smith; Martin Haeussler; Georg F. Hoffmann; Hans H. Jung; Johannis B. C. de Klerk; Marjo S. van der Knaap; Fernando Kok; Vincenzo Leuzzi; Pascale de Lonlay; André Mégarbané; Hugh Monaghan; Willy O. Renier; Pierre Rondot; Monique M. Ryan; Jürgen Seeger; Jan A.M. Smeitink; G.C.H. Steenbergen-Spanjers; Evangeline Wassmer; Bernhard Weschke; Frits A. Wijburg; Bridget Wilcken

Tyrosine hydroxylase deficiency is an autosomal recessive disorder resulting from cerebral catecholamine deficiency. Tyrosine hydroxylase deficiency has been reported in fewer than 40 patients worldwide. To recapitulate all available evidence on clinical phenotypes and rational diagnostic and therapeutic approaches for this devastating, but treatable, neurometabolic disorder, we studied 36 patients with tyrosine hydroxylase deficiency and reviewed the literature. Based on the presenting neurological features, tyrosine hydroxylase deficiency can be divided in two phenotypes: an infantile onset, progressive, hypokinetic-rigid syndrome with dystonia (type A), and a complex encephalopathy with neonatal onset (type B). Decreased cerebrospinal fluid concentrations of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol, with normal 5-hydroxyindoleacetic acid cerebrospinal fluid concentrations, are the biochemical hallmark of tyrosine hydroxylase deficiency. The homovanillic acid concentrations and homovanillic acid/5-hydroxyindoleacetic acid ratio in cerebrospinal fluid correlate with the severity of the phenotype. Tyrosine hydroxylase deficiency is almost exclusively caused by missense mutations in the TH gene and its promoter region, suggesting that mutations with more deleterious effects on the protein are incompatible with life. Genotype-phenotype correlations do not exist for the common c.698G>A and c.707T>C mutations. Carriership of at least one promotor mutation, however, apparently predicts type A tyrosine hydroxylase deficiency. Most patients with tyrosine hydroxylase deficiency can be successfully treated with l-dopa.


The Journal of Neuroscience | 2010

Pathophysiological Mechanisms of Dominant and Recessive GLRA1 Mutations in Hyperekplexia

Seo-Kyung Chung; Jean-François Vanbellinghen; Jonathan G. L. Mullins; Angela Robinson; Janina Hantke; C. L. Hammond; Daniel F. Gilbert; Michael Freilinger; Monique M. Ryan; Michael C. Kruer; Amira Masri; Candan Gürses; Colin D. Ferrie; Kirsten Harvey; Rita Shiang; John Christodoulou; Frederick Andermann; Eva Andermann; Rhys Huw Thomas; Robert J. Harvey; Joseph W. Lynch; Mark I. Rees

Hyperekplexia is a rare, but potentially fatal, neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden, unexpected auditory or tactile stimuli. This disorder is primarily caused by inherited mutations in the genes encoding the glycine receptor (GlyR) α1 subunit (GLRA1) and the presynaptic glycine transporter GlyT2 (SLC6A5). In this study, systematic DNA sequencing of GLRA1 in 88 new unrelated human hyperekplexia patients revealed 19 sequence variants in 30 index cases, of which 21 cases were inherited in recessive or compound heterozygote modes. This indicates that recessive hyperekplexia is far more prevalent than previous estimates. From the 19 GLRA1 sequence variants, we have investigated the functional effects of 11 novel and 2 recurrent mutations. The expression levels and functional properties of these hyperekplexia mutants were analyzed using a high-content imaging system and patch-clamp electrophysiology. When expressed in HEK293 cells, either as homomeric α1 or heteromeric α1β GlyRs, subcellular localization defects were the major mechanism underlying recessive mutations. However, mutants without trafficking defects typically showed alterations in the glycine sensitivity suggestive of disrupted receptor function. This study also reports the first hyperekplexia mutation associated with a GlyR leak conductance, suggesting tonic channel opening as a new mechanism in neuronal ligand-gated ion channels.


Genetics in Medicine | 2016

A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders.

Zornitza Stark; Tiong Yang Tan; Belinda Chong; Gemma R. Brett; Patrick Yap; Maie Walsh; Alison Yeung; Heidi Peters; Dylan Mordaunt; Shannon Cowie; David J. Amor; Ravi Savarirayan; George McGillivray; Lilian Downie; Paul G. Ekert; Christiane Theda; Paul A. James; Joy Yaplito-Lee; Monique M. Ryan; Richard J. Leventer; Emma Creed; Ivan Macciocca; Katrina M. Bell; Alicia Oshlack; Simon Sadedin; Peter Georgeson; Charlotte Anderson; Natalie P. Thorne; Clara Gaff; Susan M. White

Purpose:To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease.Methods:Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated.Results:Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies.Conclusions:This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090–1096.

Collaboration


Dive into the Monique M. Ryan's collaboration.

Top Co-Authors

Avatar

Robert Ouvrier

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Eppie M. Yiu

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Carroll

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

R. Kennedy

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

H. Royden Jones

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Francesco Muntoni

Great Ormond Street Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge