Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monique Majchrzak is active.

Publication


Featured researches published by Monique Majchrzak.


Behavioural Brain Research | 2006

Environmental enrichment increases responding to contextual cues but decreases overall conditioned fear in the rat

Alexandra Barbelivien; Karine Herbeaux; Philippe Oberling; Christian Kelche; Rodrigue Galani; Monique Majchrzak

This study aimed at investigating the effects of environmental enrichment on various aspects of contextual processing in adult female rats. In experiment 1, simple conditioning was studied using either a training procedure allowing overshadowing of the contextual cues by signalling footshock with a discrete tone or a training procedure allowing a reduction of this overshadowing by explicitly unpairing the footshock and the tone. In experiment 2, contextual discrimination and contextual occasion-setting were assessed. Rats were daily exposed to two different contexts. In one context, a footshock was delivered 30s after the offset of a tone, whereas in the other context the same tone was presented alone. Experiment 3 examined familiarization to a new context. Experiment 1 showed that environmental enrichment reduced the overshadowing of contextual cues by the tone and also reduced freezing to the more predictive cue according to the training procedure used. Experiment 2 showed that environmental enrichment increased the ability of rats to discriminate two contexts. Experiment 3 showed that enriched rats familiarized faster to a new context than standard rats. Taken together, these results suggest that environmental enrichment in adult rats enhances learning about contextual cues and reduces overall fear associated with aversive events.


Neural Plasticity | 2000

GABA and Muscimol as Reversible Inactivation Tools in Learning and Memory

Monique Majchrzak; G. Di Scala

Reversible inactivation of brain areas is a useful method for inferring brain-behavior relationships. Infusion of GABA or of the GABA receptor agonist muscimol is considered one interesting reversible inactivation method because it may not affect fibers of passage and may therefore be compared to axon-sparing types of lesions. This article reviews the data obtained with this method in learning and memory experiments. A critical analysis of data, collected in collaboration with Simon Brailowsky, with chronic GABA infusion is presented, together with an illustration of data obtained with muscimol-induced inactivation.


Neurobiology of Learning and Memory | 2007

The behavioral effects of enriched housing are not altered by serotonin depletion but enrichment alters hippocampal neurochemistry.

Rodrigue Galani; Marie-Camille Berthel; Christine Lazarus; Monique Majchrzak; Alexandra Barbelivien; Christian Kelche; Jean-Christophe Cassel

To assess a possible role for serotonin in the mediation of the behavioral changes induced by enriched housing conditions (EC), adult female Long-Evans rats sustaining a serotonin depletion (150 microg of 5,7-dihydroxytryptamine, icv) and sham-operated rats were housed postoperatively for 30 days in enriched (12 rats/large cage containing various objects) or standard housing conditions (2 rats/standard laboratory cage). Thereafter, anxiety responses (elevated plus-maze), locomotor activity (in the home-cage), sensori-motor capabilities (beam-walking task), and spatial memory (eight-arm radial maze) were assessed. Monoamine levels were subsequently measured in the frontoparietal cortex and the hippocampus. Overall, EC reduced anxiety-related responses, enhanced sensori-motor performance and improved the memory span in the initial stage of the spatial memory task. Despite a substantial reduction of serotonergic markers in the hippocampus (82%) and the cortex (74%), these positive effects of EC were not altered by the lesion. EC reduced the serotonin levels in the ventral hippocampus (particularly in unlesioned rats: -23%), increased serotonin turnover in the entire hippocampus (particularly in lesioned rats: +36%) and augmented the norepinephrine levels in the dorsal hippocampus (+68% in unlesioned and +49% in lesioned rats); no such alterations were found in the frontoparietal cortex. Our data suggest that an intact serotonergic system is not a prerequisite for the induction of positive behavioral effects by EC. The neurochemical changes found in the hippocampus of EC rats, however, show that the monoaminergic innervation of the hippocampus is a target of EC.


Behavioural Brain Research | 2008

Rats with different profiles of impulsive choice behavior exhibit differences in responses to caffeine and d-amphetamine and in medial prefrontal cortex 5-HT utilization

Alexandra Barbelivien; Erwan Billy; Christine Lazarus; Christian Kelche; Monique Majchrzak

This study investigated if sub-populations of rats characterized by their basal level of impulsivity (BLI) in a delayed-reinforcement task, displayed differences in the functioning of neurotransmitter systems modulating impulsive choice behavior. For this, the effects of various doses of caffeine and d-amphetamine were investigated in three sub-populations of rats displaying pronounced differences in their impulsive choice behavior and their post-mortem serotonergic and dopaminergic functions were assessed. Caffeine and d-amphetamine reduce impulsive choice behavior only in the Medium BLI sub-population. Dopamine utilization was similar in the three sub-populations, but serotonin utilization was lower in the prefrontal cortex of the Medium and Very high BLI sub-populations as compared to the low BLI one. These results suggest that anti-impulsive effects of caffeine and d-amphetamine are dependent on the BLI of rats and that a low serotonergic function in the prefrontal cortex may be a trait marker of impulsivity evaluated by impulsive choice behavior.


Neuropsychopharmacology | 2007

Combined Damage to Entorhinal Cortex and Cholinergic Basal Forebrain Neurons, Two Early Neurodegenerative Features Accompanying Alzheimer's Disease: Effects on Locomotor Activity and Memory Functions in Rats

Natalia Traissard; Karine Herbeaux; Brigitte Cosquer; Hélène Jeltsch; Barbara Ferry; Rodrigue Galani; Anne Pernon; Monique Majchrzak; Jean-Christophe Cassel

In Alzheimers disease (AD), cognitive decline is linked to cholinergic dysfunctions in the basal forebrain (BF), although the earliest neuronal damage is described in the entorhinal cortex (EC). In rats, selective cholinergic BF lesions or fiber-sparing EC lesions may induce memory deficits, but most often of weak magnitude. This study investigated, in adult rats, the effects on activity and memory of both lesions, alone or in combination, using 192 IgG-saporin (OX7-saporin as a control) and L-N-methyl-D-aspartate to destroy BF and EC neurons, respectively. Rats were tested for locomotor activity in their home cage and for working- and/or reference-memory in various tasks (water maze, Hebb-Williams maze, radial maze). Only rats with combined lesions showed diurnal and nocturnal hyperactivity. EC lesions impaired working memory and induced anterograde memory deficits in almost all tasks. Lesions of BF cholinergic neurons induced more limited deficits: reference memory was impaired in the probe trial of the water-maze task and in the radial maze. When both lesions were combined, performance never improved in the water maze and the number of errors in the Hebb-Williams and the radial mazes was always larger than in any other group. These results (i) indicate synergistic implications of BF and EC in memory function, (ii) suggest that combined BF cholinergic and fiber-sparing EC lesions may model aspects of anterograde memory deficits and restlessness as seen in AD, (iii) challenge the cholinergic hypothesis of cognitive dysfunctions in AD, and (iv) contribute to open theoretical views on AD-related memory dysfunctions going beyond the latter hypothesis.


Neuroscience | 2008

Selective cholinergic lesions in the rat nucleus basalis magnocellularis with limited damage in the medial septum specifically alter attention performance in the five-choice serial reaction time task

H. Harati; Alexandra Barbelivien; Brigitte Cosquer; Monique Majchrzak; Jean-Christophe Cassel

Selective immunotoxic cholinergic lesions in the nucleus basalis magnocellularis (NBM) impair visuospatial attention performance in a 5-choice serial reaction time task (5-CSRT task). The features of the reported deficits, however, do not perfectly match among studies, in which some lesions may have been too weak while others largely encroached onto the septal region. Using the 5-CSRT task, we therefore re-assessed the effects of NBM lesions that produced minimal septal damage. Long-Evans adult male rats were trained to stable 5-CSRT task performance (stimulus duration: 0.5 s) and subsequently subjected to intra-NBM injections of 192 IgG-saporin (200 ng/side). The lesions induced more than 90% loss of choline acetyltransferase-positive neurons in the NBM vs. only 28% in the medial septum. The decrease of the optical density of acetylcholinesterase reaction products was significant in the cortex (-91%), not in the hippocampus. In the 5-CSRT task, the lesions resulted in increased omissions (from 10% to 30%) and decreased correct responses (from 80% to 60%), with negligible or no effects on all other usually collected variables. This deficit disappeared with lengthened stimulus duration (i.e. 0.5-1 and then 5 s). Furthermore, overall performance levels decreased when the stimulus duration was shortened (i.e. 0.5-0.2 s) or its intensity attenuated, and rats with cholinergic lesions remained consistently impaired vs. controls. These results show that disruption of sustained visual attention functions by damage to the NBM cholinergic neurons can be evidenced despite weak or no effects on variables accounting for motivational, locomotion- or impulsivity-related biases. Discrepancies with previously reported results are discussed in terms of differences in lesion extent/specificity and training levels.


Behavioral Neuroscience | 2006

Selective involvement of the lateral entorhinal cortex in the control of the olfactory memory trace during conditioned odor aversion in the rat

Barbara Ferry; Guillaume Ferreira; Natalia Traissard; Monique Majchrzak

Evidence from the effect of aspiration lesions of the entorhinal cortex (EC) has shown that this region is involved in conditioned odor-aversion (COA) learning--that is, the avoidance of an odorized tasteless solution the ingestion of which precedes toxicosis--by rendering COA tolerant to long odor-toxicosis delay. The present study examined whether neurotoxic lesions restricted to the lateral or medial parts of the EC, in comparison with large aspiration lesions, were sufficient to produce this effect. Male Long-Evans rats received odor-intoxication pairing with either a short (5-min) or long (120-min) delay between the presentation of the odor and toxicosis. All groups, including sham-lesioned controls, showed COA at the 5-min odor-toxicosis delay interval, but only rats with lateral EC damage displayed COA at the longer delay. These data show that the lateral EC is part of the substrate involved in the control of the olfactory memory trace during COA.


Neurodegenerative Diseases | 2008

Coexisting Cholinergic and Parahippocampal Degeneration: A Key to Memory Loss in Dementia and a Challenge for Transgenic Models?

Jean-Christophe Cassel; Chantal Mathis; Monique Majchrzak; Pierre-Henri Moreau; John C. Dalrymple-Alford

One century after Alzheimer’s initial report, a variety of animal models of Alzheimer’s disease (AD) are being used to mimic one or more pathological signs viewed as critical for the evolution of cognitive decline in dementia. Among the most common are, (a) traditional lesion models aimed at reproducing the degeneration of one of two key brain regions affected in AD, namely the cholinergic basal forebrain (CBF) and the transentorhinal region, and (b) transgenic mouse models aimed at reproducing AD histopathological hallmarks, namely amyloid plaques and neurofibrillary tangles. These models have provided valuable insights into the development and consequences of the pathology, but they have not consistently reproduced the severity of memory deficits exhibited in AD. The reasons for this lack of correspondence with the severity of expected deficits may include the limited replication of multiple neuropathology in potentially key brain regions. A recent lesion model in the rat found that severe memory impairment was obtained only when the two traditional lesions were combined together (i.e. conjoint CBF and entorhinal cortex lesions), indicative of a dramatic impact on cognitive function when there is coexisting, rather than isolated, damage in these two brain regions. It is proposed that combining AD transgenic mouse models with additional experimental damage to both the CBF and entorhinal regions might provide a unique opportunity to further understand the evolution of the disease and improve treatments of severe cognitive dysfunction in neurodegenerative dementias.


Behavioural Brain Research | 2007

Contribution of corticosterone to cued versus contextual fear in rats

Alain R. Marchand; Alexandra Barbelivien; Alexandre Seillier; Karine Herbeaux; Alain Sarrieau; Monique Majchrzak

Several studies have suggested a positive relationship between circulating corticosterone levels and contextual conditioning. However, a positive relationship between circulating corticosterone levels and cued conditioning has also been reported. This study further investigates the relationship between corticosterone and fear conditioning by modulating the predictive value of contextual and discrete tone cues in separate groups of rats. In a first experiment in which training parameters were chosen to induce strong conditioning (five foot-shocks), we used a correlational approach and investigated whether post-training corticosterone levels were related to subsequent expression of contextual and/or tone fear. In a second experiment, in which training parameters were chosen to induce lower conditioning (one and two foot-shocks), we investigated whether a post-training corticosterone injection enhanced the consolidation of contextual and/or tone conditioning. In the first experiment, the highest post-training corticosterone levels were obtained in rats trained with paired tones and shocks. Post-training corticosterone levels tended to be positively correlated with freezing scores during the tone-fear test and were negatively correlated with freezing scores during training although not during the context-fear test. In the second experiment, a post-training injection of corticosterone (3mg/kg) had no effect on subsequent freezing to contextual cues and to a tone that did not predict shock, whereas it was efficient in increasing fear conditioned to a predictive tone. Globally, these results suggest that the predictive value of the conditioned stimulus may be the main determinant of the facilitatory action of acutely enhanced corticosterone in fear conditioning.


Neuropsychopharmacology | 2017

Response of the Tail of the Ventral Tegmental Area to Aversive Stimuli.

María-José Sánchez-Catalán; Fanny Faivre; Ipek Yalcin; Marc-Antoine Muller; Dominique Massotte; Monique Majchrzak; Michel Barrot

The GABAergic tail of the ventral tegmental area (tVTA), also named rostromedial tegmental nucleus (RMTg), exerts an inhibitory control on dopamine neurons of the VTA and substantia nigra. The tVTA has been implicated in avoidance behaviors, response to drugs of abuse, reward prediction error, and motor functions. Stimulation of the lateral habenula (LHb) inputs to the tVTA, or of the tVTA itself, induces avoidance behaviors, which suggests a role of the tVTA in processing aversive information. Our aim was to test the impact of aversive stimuli on the molecular recruitment of the tVTA, and the behavioral consequences of tVTA lesions. In rats, we assessed Fos response to lithium chloride (LiCl), β-carboline, naloxone, lipopolysaccharide (LPS), inflammatory pain, neuropathic pain, foot-shock, restraint stress, forced swimming, predator odor, and opiate withdrawal. We also determined the effect of tVTA bilateral ablation on physical signs of opiate withdrawal, and on LPS- and LiCl-induced conditioned taste aversion (CTA). Naloxone-precipitated opiate withdrawal induced Fos in μ-opioid receptor-positive (15%) and -negative (85%) tVTA cells, suggesting the presence of both direct and indirect mechanisms in tVTA recruitment during withdrawal. However, tVTA lesion did not impact physical signs of opiate withdrawal. Fos induction was also present with repeated, but not single, foot-shock delivery. However, such induction was mostly absent with other aversive stimuli. Moreover, tVTA ablation had no impact on CTA. Although stimulation of the tVTA favors avoidance behaviors, present findings suggest that this structure may be important to the response to some, but not all, aversive stimuli.

Collaboration


Dive into the Monique Majchrzak's collaboration.

Top Co-Authors

Avatar

Alexandra Barbelivien

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karine Herbeaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Will

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

O. Gosselin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rodrigue Galani

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alexandre Seillier

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chantal Mathis

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge