Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monique Pommepuy is active.

Publication


Featured researches published by Monique Pommepuy.


Applied and Environmental Microbiology | 2007

Evaluation of Removal of Noroviruses during Wastewater Treatment, Using Real-Time Reverse Transcription-PCR: Different Behaviors of Genogroups I and II

Allegra Kyria da Silva; Jean-Claude Le Saux; Sylvain Parnaudeau; Monique Pommepuy; Menachem Elimelech; Françoise S. Le Guyader

ABSTRACT Noroviruses, an important cause of gastroenteritis, are excreted by infected individuals and are therefore present in wastewater. We quantified norovirus genogroup I (GI) and GII in wastewater at different locations in France and evaluated removal by a range of treatment types, including basic (waste stabilization pond), current industry standard (activated sludge), and state-of-the-art (submerged membrane bioreactor) treatments. Noroviruses were quantified using real-time reverse transcription-PCR (rRT-PCR). Mengovirus was used as a virus extraction control, and internal controls were used to verify the level of GI and GII rRT-PCR inhibition. A total of 161 (81 influent and 79 effluent) samples were examined; GI and GII were detected in 43 and 88% of the influent samples, respectively, and in 24 and 14% of the effluent samples, respectively. Physicians in France report far more cases of GII than GI during outbreaks; thus, the frequent presence of GI was unexpected. The GI influent concentrations were more variable, the peak GI influent concentrations were higher than the peak GII influent concentrations at all four sites (up to 1 × 109 and 6 × 107 genome copies/liter, respectively), and the average positive influent concentrations of GI were higher than the average positive influent concentrations of GII. The maximum effluent breakthrough concentrations were 6 × 106 and 3 × 106 genome copies/liter for GI and GII, respectively, indicating that the four treatment systems studied decreased the norovirus contamination load in receiving waters.


Journal of Clinical Microbiology | 2006

Detection of Multiple Noroviruses Associated with an International Gastroenteritis Outbreak Linked to Oyster Consumption

Françoise S. Le Guyader; Fabienne Bon; Dario DeMedici; Sylvain Parnaudeau; Alessandra Bertone; Silvia Crudeli; Aoife Doyle; Mohamed Zidane; Elisabetta Suffredini; Evelyne Kohli; Francesco Maddalo; Marina Monini; Anne Gallay; Monique Pommepuy; Pierre Pothier; Franco Maria Ruggeri

ABSTRACT An international outbreak linked to oyster consumption involving a group of over 200 people in Italy and 127 total subjects in 13 smaller clusters in France was analyzed using epidemiological and clinical data and shellfish samples. Environmental information from the oyster-producing area, located in a lagoon in southern France, was collected to investigate the possible events leading to the contamination. Virologic analyses were conducted by reverse transcription-PCR (RT-PCR) using the same primer sets for both clinical and environmental samples. After sequencing, the data were analyzed through the database operated by the scientific network FoodBorne Viruses in Europe. The existence of an international collaboration between laboratories was critical to rapidly connect the data and to fully interpret the results, since it was not obvious that one food could be the link because of the diversity of the several norovirus strains involved in the different cases. It was also demonstrated that heavy rain was responsible for the accidental contamination of seafood, leading to a concentration of up to hundreds of genomic copies per oyster as detected by real-time RT-PCR.


Journal of Clinical Microbiology | 2008

Aichi Virus, Norovirus, Astrovirus, Enterovirus, and Rotavirus Involved in Clinical Cases from a French Oyster-Related Gastroenteritis Outbreak

Françoise S. Le Guyader; Jean-Claude Le Saux; Katia Ambert-Balay; Joanna Krol; Ophelie Serais; Sylvain Parnaudeau; Helene Giraudon; Gilles Delmas; Monique Pommepuy; Pierre Pothier; Robert L. Atmar

ABSTRACT Following a flooding event close to a shellfish production lagoon, 205 cases of gastroenteritis were linked to oyster consumption. Twelve stool samples from different individuals were collected. Analysis showed that eight samples were positive for multiple enteric viruses, and one stool sample had seven different enteric viruses. Analysis of shellfish implicated in the outbreak allowed detection of the same diversity of enteric viruses, with some viral genomic sequences being identical to those obtained from stool sample analysis. Shellfish were contaminated by as many as five different enteric viruses. For the first time in Europe, Aichi virus was identified in oyster samples. Shellfish samples collected over 3 weeks following the outbreak showed a progressive decline in the level of virus contamination as measured by the virus diversity detected and by quantitative reverse transcription-PCR.


Emerging Infectious Diseases | 2006

Norwalk virus-specific binding to oyster digestive tissues

Françoise S. Le Guyader; Fabienne Loisy; Robert L. Atmar; Anne M. Hutson; Mary K. Estes; Nathalie Ruvoën-Clouet; Monique Pommepuy; Jacques Le Pendu

Specific binding of virus to oysters can selectively concentrate a human pathogen.


Applied and Environmental Microbiology | 2009

Detection and quantification of noroviruses in shellfish.

Françoise S. Le Guyader; Sylvain Parnaudeau; Julien Schaeffer; Albert Bosch; Fabienne Loisy; Monique Pommepuy; Robert L. Atmar

ABSTRACT Noroviruses (NoVs) are the most common viral agents of acute gastroenteritis in humans, and high concentrations of NoVs are discharged into the environment. As these viruses are very resistant to inactivation, the sanitary consequences are contamination of food, including molluscan shellfish. There are four major problems with NoV detection in shellfish samples: low levels of virus contamination, the difficulty of efficient virus extraction, the presence of interfering substances that inhibit molecular detection, and NoV genetic variability. The aims of this study were to adapt a kit for use with a method previously shown to be efficient for detection of NoV in shellfish and to use a one step real-time reverse transcription-PCR method with addition of an external viral control. Comparisons of the two methods using bioaccumulated oysters showed that the methods reproducibly detected similar levels of virus in oyster samples. Validation studies using naturally contaminated samples also showed that there was a good correlation between the results of the two methods, and the variability was more attributable to the level of sample contamination. Magnetic silica very efficiently eliminated inhibitors, and use of extraction and amplification controls increased quality assurance. These controls increased the confidence in estimates of NoV concentrations in shellfish samples and strongly supported the conclusion that the results of the method described here reflected the levels of virus contamination in oysters. This approach is important for food safety and is under evaluationfor European regulation.


International Journal of Food Microbiology | 2003

A semiquantitative approach to estimate Norwalk-like virus contamination of oysters implicated in an outbreak.

Françoise S. Le Guyader; Frederick H. Neill; Eric Dubois; Fabienne Bon; Fabienne Loisy; Evelyne Kohli; Monique Pommepuy; Robert L. Atmar

Gastroenteritis outbreaks linked to shellfish consumption are numerous and Norwalk-like viruses (NLVs) are frequently the responsible causative agents. However, molecular data linking shellfish and clinical samples are still rare despite the availability of diagnostic methods. In a recent outbreak we found the same NLV sequence in stool and shellfish samples (100% identity over 313 bp in the capsid region), supporting the epidemiological data implicating the shellfish as the source of infection. A semiquantitative approach using most-probable-number-RT-PCR (MPN-RT-PCR) demonstrated the presence of a hundred of RT-PCR units per oyster. Follow-up of the oysters in the harvest area, for approximately 2 months, showed persistence of NLV contamination of the shellfish at levels up to a thousand RT-PCR units per oyster prior to depuration of the shellfish. This finding is useful in beginning to understand shellfish contamination and depuration for use in future hazard analyses.


Virologie | 2011

Norovirus et huîtres : de la terre à la mer !

Adeline Thomas; Jean-Claude Le Saux; Joanna Ollivier; Haifa Maalouf; Monique Pommepuy; Françoise S. Le Guyader

Abstract A review of the biology, epidemiology, diagnosis and public health importance of foodborne viruses was performed. Data needs to support a risk assessment were also identified. In addition possible control options and their anticipated impact to prevent or reduce the number of foodborne viral human infections were identified, including the scientific reasons for and against the establishment of food safety criteria and process hygiene criteria for viruses for certain food categories. Food may be contaminated by virus during all stages of the food supply chain, and transmission can occur by consumption of food contaminated during the production process (primary production, or during further processing), or contaminated by infected food handlers. Transmission of zoonotic viruses (e.g. HEV) can also occur by consumption of products of animal origin. Viruses do not multiply in foods, but may persist for extended periods of time as infectious particles in the environment, or in foods. At the EU‐level it is unknown how much viral disease can be attributed to foodborne spread. The relative contribution of different sources (shellfish, fresh produce, food handler including asymptomatic shedders, food handling environment) to foodborne illness has not been determined. The Panel recommends focusing controls on preventive measures to avoid viral contamination rather than trying to remove/inactivate these viruses from food. Also, it is recommended to introduce a microbiological criteria for viruses in bivalve molluscs, unless they are labelled “to be cooked before consumption”. The criteria could be used by food business operators to validate their control options. Furthermore, it is recommended to refine the regulatory standards and monitoring approaches in order to improve public health protection. Introduction of virus microbiological criteria for classification of bivalve molluscs production areas should be considered. A virus monitoring programme for compliance with these criteria should be risk based according to the findings of a sanitary survey.


Oceanologica Acta | 1998

Responses of enteric bacteria to environmental stresses in seawater

Marc Troussellier; Jean-Luc Bonnefont; Claude Courties; A. Derrien; E. Dupray; Michel J. Gauthier; Michele Gourmelon; Fabien Joux; Philippe Lebaron; Yvan Martin; Monique Pommepuy

Abstract The effects of different environmental factors (nutrient deprivation, hyperosmotic shock, exposure to light) on enteric bacteria which have been transferred into the marine environment, have been studied experimentally (microcosms) by considering demographic, physiological and genetic responses in Escherichia coli or Salmonella typhimurium populations. Short-term experiments (≤ 48 h) showed that nutrient deprivation induced limited changes in measured bacteriological variables, but when combined with hyperosmotic shock, it results in an energy charge decrease and inactivation of membrane transport. Light exposure mainly affects the colony-forming capacity of bacterial populations. Combining different stress factors confirmed the rapid appearance of a viable, but nonculturable state (VBNC) in populations of E. coli and S. typhimurium. It has been shown that cellular forms other than those previously described in the literature can be generated following incubation in seawater. It was also established that pre-adaptation phenomena may occur, leading to better survival (e.g. pre-incubation in seawater in darkness enhanced survival under light exposure). An explanation concerning these phenomena can be found by looking at the rpoS gene which controls the expression of numerous genes and can trigger a general anti-stress response under different adverse conditions. Although the results provide better comprehension of the fate of enteric bacteria in the marine environment, they also raise numerous questions related to fundamental and applied problems, given in the conclusion of this paper.


Applied and Environmental Microbiology | 2005

Use of Rotavirus Virus-Like Particles as Surrogates To Evaluate Virus Persistence in Shellfish

Fabienne Loisy; Robert L. Atmar; Jean-Claude Le Saux; Jean Cohen; Marie-Paule Caprais; Monique Pommepuy; Françoise S. Le Guyader

ABSTRACT Rotavirus virus-like particles (VLPs) and MS2 bacteriophages were bioaccumulated in bivalve mollusks to evaluate viral persistence in shellfish during depuration and relaying under natural conditions. Using this nonpathogenic surrogate virus, we were able to demonstrate that about 1 log10 of VLPs was depurated after 1 week in warm seawater (22°C). Phage MS2 was depurated more rapidly (about 2 log10 in 1 week) than were VLPs, as determined using a single-compartment model and linear regression analysis. After being relayed in the estuary under the influence of the tides, VLPs were detected in oysters for up to 82 days following seeding with high levels of VLPs (concentration range between 1010 and 109 particles per g of pancreatic tissue) and for 37 days for lower contamination levels (105 particles per g of pancreatic tissue). These data suggest that viral particles may persist in shellfish tissues for several weeks.


Food and Environmental Virology | 2010

Environmental Conditions Leading to Shellfish Contamination and Related Outbreaks

Haifa Maalouf; Monique Pommepuy; Françoise S. Le Guyader

Human fecal wastes contain a large variety of viruses that can enter the environment through discharge of waste materials from infected individuals. Despite the high diversity of viruses that are introduced into the environment by human fecal pollution, only a few have been recognized to cause disease in association with consumption of contaminated shellfish. To explain bivalve mollusks contamination, several factors including human epidemiology, virus persistence through sewage treatment plant, and shellfish uptake may be suggested. Considering different outbreaks described in the literature, the most common route for transmission is accidental contamination after heavy rainfall, when extra loads cause an overflow, and release of untreated sewage into the aquatic environment. Outbreak analysis also demonstrates the impact on shellfish consumption of some viral strain transmission and thus their impact on molecular epidemiology, especially for norovirus. To limit shellfish contamination and thus to protect the consumer, the most desirable and effective option is to reduce the viral input.

Collaboration


Dive into the Monique Pommepuy's collaboration.

Researchain Logo
Decentralizing Knowledge