Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monique R.O. Trugilho is active.

Publication


Featured researches published by Monique R.O. Trugilho.


Journal of Proteomics | 2009

Bothrops insularis venomics: A proteomic analysis supported by transcriptomic-generated sequence data

Richard H. Valente; Patricia Ramos Guimarães; Magno Junqueira; Ana Gisele C. Neves-Ferreira; Márcia Regina Soares; Alex Chapeaurouge; Monique R.O. Trugilho; Ileana R. León; Surza Lucia Gonçalves da Rocha; Ana Lucia Oliveira-Carvalho; Luciana S. Wermelinger; Denis L. S. Dutra; Luciana I. Leão; Inácio L.M. Junqueira-de-Azevedo; Paulo L. Ho; Russolina B. Zingali; Jonas Perales; Gilberto B. Domont

A joint transcriptomic and proteomic approach employing two-dimensional electrophoresis, liquid chromatography and mass spectrometry was carried out to identify peptides and proteins expressed by the venom gland of the snake Bothrops insularis, an endemic species of Queimada Grande Island, Brazil. Four protein families were mainly represented in processed spots, namely metalloproteinase, serine proteinase, phospholipase A(2) and lectin. Other represented families were growth factors, the developmental protein G10, a disintegrin and putative novel bradykinin-potentiating peptides. The enzymes were present in several isoforms. Most of the experimental data agreed with predicted values for isoelectric point and M(r) of proteins found in the transcriptome of the venom gland. The results also support the existence of posttranslational modifications and of proteolytic processing of precursor molecules which could lead to diverse multifunctional proteins. This study provides a preliminary reference map for proteins and peptides present in Bothrops insularis whole venom establishing the basis for comparative studies of other venom proteomes which could help the search for new drugs and the improvement of venom therapeutics. Altogether, our data point to the influence of transcriptional and post-translational events on the final venom composition and stress the need for a multivariate approach to snake venomics studies.


Journal of Proteome Research | 2009

Two-dimensional difference gel electrophoresis (DiGE) analysis of plasmas from dengue fever patients.

Lidiane M. Albuquerque; Monique R.O. Trugilho; Alex Chapeaurouge; Patricia B. Jurgilas; Patricia T. Bozza; Fernando A. Bozza; Jonas Perales; Ana Gisele C. Neves-Ferreira

Dengue fever is the worlds most important arthropod-born viral disease affecting humans. To contribute to a better understanding of its pathogenesis, this study aims to identify proteins differentially expressed in plasmas from severe dengue fever patients relative to healthy donors. The use of 2-D Fluorescence Difference Gel Electrophoresis to analyze plasmas depleted of six high-abundance proteins (albumin, IgG, antitrypsin, IgA, transferrin and haptoglobin) allowed for the detection of 73 differentially expressed protein spots (n = 13, p < 0.01), of which 37 could be identified by mass spectrometry. These 37 spots comprised a total of 14 proteins, as follows: 7 had increased expression in plasmas from dengue fever patients (C1 inhibitor, alpha1-antichymotrypsin, vitamin D-binding protein, fibrinogen gamma-chain, alpha1-acid glycoprotein, apolipoprotein J and complement component C3c), while 7 others had decreased expression in the same samples (alpha-2 macroglobulin, prothrombin, histidine-rich glycoprotein, apolipoproteins A-IV and A-I, transthyretin and complement component C3b). The possible involvement of these proteins in the inflammatory process triggered by dengue virus infection and in the repair mechanisms of vascular damage occurring in this pathology is discussed in this study.


Journal of Proteome Research | 2012

Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes.

Ana Tung Ching Ching; Adriana Franco Paes Leme; André Zelanis; Marisa Maria Teixeira da Rocha; Maria de Fátima D. Furtado; Débora Andrade Silva; Monique R.O. Trugilho; Surza Lucia Gonçalves da Rocha; Jonas Perales; Paulo Lee Ho; Solange M.T. Serrano; Inácio L.M. Junqueira-de-Azevedo

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus , in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (∼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.


Journal of Proteome Research | 2009

Crotalid snake venom subproteomes unraveled by the antiophidic protein DM43.

Surza Lucia Gonçalves da Rocha; Ana Gisele C. Neves-Ferreira; Monique R.O. Trugilho; Alex Chapeaurouge; Ileana R. León; Richard H. Valente; Gilberto B. Domont; Jonas Perales

Snake venoms are mixtures of proteins and peptides with different biological activities, many of which are very toxic. Several animals, including the opossum Didelphis aurita, are resistant to snake venoms due to the presence of neutralizing factors in their blood. An antihemorrhagic protein named DM43 was isolated from opossum serum. It inhibits snake venom metalloproteinases through noncovalent complex formation with these enzymes. In this study, we have used DM43 and proteomic techniques to explore snake venom subproteomes. Four crotalid venoms were chromatographed through an affinity column containing immobilized DM43. Bound fractions were analyzed by one- and two-dimensional gel electrophoresis, followed by identification by MALDI-TOF/TOF mass spectrometry. With this approach, we could easily visualize and compare the metalloproteinase compositions of Bothrops atrox, Bothrops jararaca, Bothrops insularis, and Crotalus atrox snake venoms. The important contribution of proteolytic processing to the complexity of this particular subproteome was demonstrated. Fractions not bound to DM43 column were similarly analyzed and were composed mainly of serine proteinases, C-type lectins, C-type lectin-like proteins, l-amino acid oxidases, nerve growth factor, cysteine-rich secretory protein, a few metalloproteinases (and their fragments), and some unidentified spots. Although very few toxin families were represented in the crotalid venoms analyzed, the number of protein spots detected was in the hundreds, indicating an important protein variability in these natural secretions. DM43 affinity chromatography and associated proteomic techniques proved to be useful tools to separate and identify proteins from snake venoms, contributing to a better comprehension of venom heterogeneity.


Journal of Proteomics | 2009

Differential proteomics of the plasma of individuals with sepsis caused by Acinetobacter baumannii

Afonso J. C. Soares; Marise F. Santos; Monique R.O. Trugilho; Ana Gisele C. Neves-Ferreira; Jonas Perales; Gilberto B. Domont

This study examines alterations in the plasma proteome in ten adults affected by sepsis caused by Acinetobacter baumannii as compared to paired healthy controls. 2-DE profiles of plasma from patients and paired healthy donors, depleted of the six most abundant proteins, were analysed by the DIGE technique. Protein spot detection and quantification were performed with the Differential In-gel Analysis and Biological Variation Analysis modules of the DeCyder() software. Differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) after colloidal Coomassie blue staining. Almost 900 spots were detected on a unique 2-D gel by the DIGE technique. A total of 269 protein spots of differential abundance were shown to be statistically significant (2.5-fold) with p values of p< or =0.01 (135 spots) and p< or =0.05 (134 spots) as determined by the t test. Seventy-one spots were submitted to mass spectrometry and about 30% could be successfully identified. This multiplex approach significantly reduced experimental variability, allowing for the confident detection of small differences in protein levels. Results include differentially expressed lipoproteins as well as proteins belonging to inflammatory/coagulation pathways and the kallikrein-kinin system. These data improves the knowledge for future developments in sepsis diagnosis, staging and therapy.


Science Translational Medicine | 2017

Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum

Irene Bosch; Helena de Puig; Megan Hiley; Marc Carré-Camps; Federico Perdomo-Celis; Carlos F. Narváez; Doris M. Salgado; Dewahar Senthoor; Madeline O’Grady; Elizabeth Phillips; Ann Fiegen Durbin; Diana Fandos; Hikaru Miyazaki; Chun-Wan Yen; Margarita Gélvez-Ramírez; Rajas V. Warke; Lucas S. Ribeiro; Mauro M. Teixeira; Roque P. Almeida; José Esteban Muñoz-Medina; Juan E. Ludert; Maurício Lacerda Nogueira; Tatiana Elias Colombo; Ana Carolina Bernardes Terzian; Patricia T. Bozza; Andrea Surrage Calheiros; Yasmine Rangel Vieira; Giselle Barbosa-Lima; Alexandre Gomes Vizzoni; José Cerbino-Neto

A low-cost, equipment-free rapid antigen test distinguishes dengue virus serotypes and Zika virus in patient sera without detectable cross-reactivity. Distinguishing dengue from Zika More than mere summer pests, mosquitoes can transmit viruses, such as dengue and Zika. Diagnosing infections of these related flaviviruses can be difficult because of cross-reactivity in diagnostic tests. Bosch et al. developed monoclonal antibodies to detect viral nonstructural 1 (NS1) protein antigens specific to dengue and Zika. Incorporating the antibodies into an immunochromatography format yielded a rapid diagnostic assay that produces a visual readout in the presence of NS1. The assay identified the four dengue serotypes and Zika viral infections without cross-reaction when testing human serum samples from endemic areas in Central and South America and India. This approach could be useful for developing rapid diagnostics for other emerging pathogens. The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1–4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-μl serum sample, the sensitivity and specificity values of the DENV1–4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-μl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction–positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.


PLOS Pathogens | 2017

Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue

Monique R.O. Trugilho; Eugenio D. Hottz; Giselle Villa Flor Brunoro; André Teixeira-Ferreira; Paulo C. Carvalho; Gustavo A. Salazar; Guy A. Zimmerman; Fernando A. Bozza; Patricia T. Bozza; Jonas Perales

Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses.


Proteomics | 2012

Using mass spectrometry to explore the neglected glycan moieties of the antiophidic proteins DM43 and DM64

Ileana R. León; Ana Gisele C. Neves-Ferreira; Surza Lucia Gonçalves da Rocha; Monique R.O. Trugilho; Jonas Perales; Richard H. Valente

The resistance of the opossum Didelphis aurita to Bothrops snake venoms is attributed to the opossums antihemorrhagic (DM43) and antimyotoxic (DM64) acidic serum glycoproteins. The aim of this study was to characterize the N‐glycosylation sites of these antiophidic proteins and to determine whether their glycans influence the biological activity measured by in vitro assays. Our experimental pipeline included the sequential enzymatic digestion of the inhibitors with two different proteinases (trypsin and endoproteinase Asp‐N) and eventually with trypsin, peptide‐N‐glycosidase F (PNGase F) and endoproteinase Asp‐N, used in that order. All of the peptide and protein samples were analyzed by MALDI‐TOF/TOF MS. The results experimentally confirmed the putative N‐glycosylation sites of DM43 (Asn23, Asn156, Asn160, and Asn175) and DM64 (Asn46, Asn179, Asn183, and Asn379). Following treatments with specific glycosidases, complex‐type oligosaccharides containing galactose and sialic acid could be assigned to both proteins. The removal of these monosaccharide units by exoglycosidase digestion did not measurably affect the inhibitory activity. In contrast, partially deglycosylated DM43 treated with PNGase F under nondenaturing conditions was half as effective as native DM43. In conclusion, we have demonstrated that the contribution of the carbohydrate portion of these potentially therapeutic molecules, for their mechanism of action, should not be overlooked.


Current Topics in Medicinal Chemistry | 2014

Potential Correlation between Tumor Aggressiveness and Protein Expression Patterns of Nipple Aspirate Fluid (NAF) Revealed by Gel-Based Proteomic Analysis

Giselle Villa Flor Brunoro; André Teixeira da Silva Ferreira; Monique R.O. Trugilho; Tamires Sousa de Oliveira; Luis Cláudio Belo Amendola; Jonas Perales; Richard H. Valente; Claudia Vitória de Moura Gallo; Dante Pagnoncelli; Ana Gisele C. Neves-Ferreira

Breast cancer is the leading cause of cancer related deaths in women. Most breast cancers stem from mammary ductal cells that secrete nipple aspirate fluid (NAF), a biological sample that contains proteins associated with the tumor microenvironment. In this study, NAF samples from both breasts of 7 Brazilian patients with unilateral breast cancer were analyzed. These samples were systematically compared using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional fluorescence difference gel electrophoresis (2D-DIGE); substantial qualitative individual differences were observed. In general, when NAF samples were compared from both breasts within the same patient their electrophoretic patterns were very similar, regardless of their cancer status. A comparison of all patients identified 2 main NAF protein profiles. The HomEP, homogeneous expression profile, was characterized by typical SDS-PAGE and 2D-DIGE protein patterns that were observed in patients with a good breast cancer prognosis and were similar to previous Type I NAF classifications that used one-dimensional electrophoresis. The HetEP, heterogeneous expression profile, was characterized by distinct protein patterns that have not been reported in previous studies and have been primarily observed in breast cancer patients with a poor prognosis. The NAF samples were rich in metal-dependent proteolytic enzymes, as visualized by SDS-PAGE zymography. They varied qualitatively with respect to their gelatinolytic band distribution. However, there were no correlations between these characteristics and the pathologic features of these tumors. A comparative analysis of NAF samples taken from each breast in a single patient showed conserved zymographic patterns. In conclusion, the present study highlights important distinctions in the protein content of individual NAF samples and provides insight into the composition of the tumor microenvironment. These data reinforce breast cancer as a heterogeneous disease with a diverse natural history, which is becoming increasingly evident through other recent studies.


British Journal of Sports Medicine | 2008

Chronic dynamic exercise increases Apolipoprotein A-I expression in rabbit renal cortex as determined by Proteomic technology

R de Moraes; Richard H. Valente; Ileana R. León; Monique R.O. Trugilho; Antonio Claudio Lucas da Nóbrega; Jonas Perales; Eduardo Tibiriçá

Objective: We have shown previously that exercise training enhances endothelium-dependent and endothelium-independent vascular relaxation in rabbit kidney. This study aimed to investigate protein expression changes in the rabbit renal cortex induced by chronic dynamic exercise. Design: Kidneys were obtained from New Zealand rabbits either confined to pens (n = 8) or trained on a treadmill (0% grade) for 5 days/week at a speed of 18 m/min for 60-min periods over 12 weeks (n = 8). Expression of proteins in the renal cortex was determined by colloidal Coomassie blue staining after two-dimensional polyacrylamide gel electrophoresis. Differential protein spots were excised and digested with trypsin, and peptides were sequenced by electrospray ionization-ion trap mass spectrometry. Results: Two pairs of matching differentially stained spots displayed an approximate threefold increase in trained compared with sedentary animals. These four spots presented a molecular mass of 23 kDa but different pI values. Mass spectrometric analyses revealed the pairs of matching spots as being rabbit apolipoprotein A-I. Conclusion: Chronic dynamic exercise increases apolipoprotein A-I expression in the rabbit renal cortex. This fact could be involved in the alterations observed in the renal circulation after exercise training.

Collaboration


Dive into the Monique R.O. Trugilho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilberto B. Domont

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge