Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monique Rijnkels is active.

Publication


Featured researches published by Monique Rijnkels.


Genome Biology | 2009

The bovine lactation genome: insights into the evolution of mammalian milk

Danielle G. Lemay; David J. Lynn; William F. Martin; Margaret C. Neville; Theresa Casey; Gonzalo Rincon; Evgenia V. Kriventseva; Wesley C. Barris; Angie S. Hinrichs; Adrian J. Molenaar; Katherine S. Pollard; Nauman J. Maqbool; Kuljeet Singh; Regan Murney; Evgeny M. Zdobnov; Ross L. Tellam; Juan F. Medrano; J. Bruce German; Monique Rijnkels

BackgroundThe newly assembled Bos taurus genome sequence enables the linkage of bovine milk and lactation data with other mammalian genomes.ResultsUsing publicly available milk proteome data and mammary expressed sequence tags, 197 milk protein genes and over 6,000 mammary genes were identified in the bovine genome. Intersection of these genes with 238 milk production quantitative trait loci curated from the literature decreased the search space for milk trait effectors by more than an order of magnitude. Genome location analysis revealed a tendency for milk protein genes to be clustered with other mammary genes. Using the genomes of a monotreme (platypus), a marsupial (opossum), and five placental mammals (bovine, human, dog, mice, rat), gene loss and duplication, phylogeny, sequence conservation, and evolution were examined. Compared with other genes in the bovine genome, milk and mammary genes are: more likely to be present in all mammals; more likely to be duplicated in therians; more highly conserved across Mammalia; and evolving more slowly along the bovine lineage. The most divergent proteins in milk were associated with nutritional and immunological components of milk, whereas highly conserved proteins were associated with secretory processes.ConclusionsAlthough both copy number and sequence variation contribute to the diversity of milk protein composition across species, our results suggest that this diversity is primarily due to other mechanisms. Our findings support the essentiality of milk to the survival of mammalian neonates and the establishment of milk secretory mechanisms more than 160 million years ago.


Journal of Mammary Gland Biology and Neoplasia | 2002

Multispecies Comparison of the Casein Gene Loci and Evolution of Casein Gene Family

Monique Rijnkels

Caseins, the major milk proteins, are present in a genomic cluster spanning 250–350 kb. The divergence at the coding level between human, rodent, and cattle sequences is rather extensive for most of the genes in this region. Nevertheless, comparative analysis of genomic sequences harboring the casein gene cluster region of these species (with equal evolutionary distances 79–88 Myr) shows that the organization and orientation of the genes is highly conserved. The conserved gene structure indicates that the molecular diversity of the casein genes is achieved through variable use of exons in different species and high evolutionary divergence. Comparative analysis also revealed the presence within two species of uncharacterized casein family members and ruled out the previously held notion that another gene family, located in this region, is primate-specific. Several other new genes as well as conserved noncoding sequences with potential regulatory functions were identified. All genes identified in this region are, or are predicted to be, secreted proteins involved in mineral homeostasis, nutrition, and/or host defense, and are mostly expressed in the mammary and/or salivary glands. These observations suggest a possible common ancestry for the genes in this region.


Physiological Genomics | 2009

Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome

Patricia Delfin Maningat; Partha Sen; Monique Rijnkels; Agneta L. Sunehag; Darryl L. Hadsell; Molly S. Bray; Morey W. Haymond

The molecular physiology underlying human milk production is largely unknown because of limitations in obtaining tissue samples. Determining gene expression in normal lactating women would be a potential step toward understanding why some women struggle with or fail at breastfeeding their infants. Recently, we demonstrated the utility of RNA obtained from breast milk fat globule (MFG) to detect mammary epithelial cell (MEC)-specific gene expression. We used MFG RNA to determine the gene expression profile of human MEC during lactation. Microarray studies were performed using Human Ref-8 BeadChip arrays (Illumina). MFG RNA was collected every 3 h for 24 h from five healthy, exclusively breastfeeding women. We determined that 14,070 transcripts were expressed and represented the MFG transcriptome. According to GeneSpring GX 9, 156 ontology terms were enriched (corrected P < 0.05), which include cellular (n = 3,379 genes) and metabolic (n = 2,656) processes as the most significantly enriched biological process terms. The top networks and pathways were associated primarily with cellular activities most likely involved with milk synthesis. Multiple sampling over 24 h enabled us to demonstrate core circadian clock gene expression and the periodicity of 1,029 genes (7%) enriched for molecular functions involved in cell development, growth, proliferation, and cell morphology. In addition, we found that the MFG transcriptome was comparable to the metabolic gene expression profile described for the lactating mouse mammary gland. This paper is the first to describe the MFG transcriptome in sequential human samples over a 24 h period, providing valuable insights into gene expression in the human MEC.


Journal of Mammary Gland Biology and Neoplasia | 2010

The Epigenetic Landscape of Mammary Gland Development and Functional Differentiation

Monique Rijnkels; Elena B. Kabotyanski; Mohamad B. Montazer-Torbati; C. Hue Beauvais; Yegor Vassetzky; Jeffrey M. Rosen; Eve Devinoy

Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.


Journal of Mammary Gland Biology and Neoplasia | 2012

Lactation and Neonatal Nutrition: Defining and Refining the Critical Questions

Margaret C. Neville; Steven M. Anderson; James L. McManaman; Thomas M. Badger; Maya Bunik; Nikhat Contractor; Tessa L. Crume; Dana Dabelea; Sharon M. Donovan; Nicole Forman; Daniel N. Frank; Jacob E. Friedman; J. Bruce German; Armond S. Goldman; Darryl L. Hadsell; Michael Hambidge; Katie Hinde; Nelson D. Horseman; Russell C. Hovey; Edward N. Janoff; Nancy F. Krebs; Carlito B. Lebrilla; Danielle G. Lemay; Paul S. MacLean; Paula P. Meier; Ardythe L. Morrow; Josef Neu; Laurie A. Nommsen-Rivers; Daniel J Raiten; Monique Rijnkels

This paper resulted from a conference entitled “Lactation and Milk: Defining and refining the critical questions” held at the University of Colorado School of Medicine from January 18–20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research. Emerging questions about how milk components affect cognitive development and behavioral phenotype of the offspring are presented in Section II. In Section III we outline the important unanswered questions about regulation of mammary gland development, the heritability of defects, the effects of maternal nutrition, disease, metabolic status, and therapeutic drugs upon the subsequent lactation. Questions surrounding breastfeeding practice are also highlighted. In Section IV we describe the specific nutritional challenges faced by three different populations, namely preterm infants, infants born to obese mothers who may or may not have gestational diabetes, and infants born to undernourished mothers. The recognition that multidisciplinary training is critical to advancing the field led us to formulate specific training recommendations in Section V. Our recommendations for research emphasis are summarized in Section VI. In sum, we present a roadmap for multidisciplinary research into all aspects of human lactation, milk and its role in infant nutrition for the next decade and beyond.


Journal of Biological Chemistry | 2009

Lactogenic Hormonal Induction of Long Distance Interactions between β-Casein Gene Regulatory Elements

Elena B. Kabotyanski; Monique Rijnkels; Courtneay Freeman-Zadrowski; Adam C. Buser; Dean P. Edwards; Jeffrey M. Rosen

Lactogenic hormone regulation of β-casein gene expression in mammary epithelial cells provides an excellent model in which to study the mechanisms by which steroid and peptide hormone signaling control gene expression. Prolactin- and glucocorticoid-mediated induction of β-casein gene expression involves two principal regulatory regions, a proximal promoter and a distal enhancer located in the mouse approximately −6 kb upstream of the transcription start site. Using a chromosome conformation capture assay and quantitative real time PCR, we demonstrate that a chromatin loop is created in conjunction with the recruitment of specific transcription factors and p300 in HC11 mammary epithelial cells. Stimulation with both prolactin and hydrocortisone is required for the induction of these long range interactions between the promoter and enhancer, and no DNA looping was observed in nontreated cells or cells treated with each of the hormones separately. The lactogenic hormone-induced interaction between the proximal promoter and distal enhancer was confirmed in hormone-treated primary three-dimensional mammary acini cultures. In addition, the developmental regulation of DNA looping between the β-casein regulatory regions was observed in lactating but not in virgin mouse mammary glands. Furthermore, β-casein mRNA induction and long range interactions between these regulatory regions were inhibited in a progestin-dependent manner following stimulation with prolactin and hydrocortisone in HC11 cells expressing human PR-B. Collectively, these data suggest that the communication between these regulatory regions with intervening DNA looping is a crucial step required to both create and maintain active chromatin domains and regulate transcription.


PLOS ONE | 2013

Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation.

Monique Rijnkels; Courtneay Freeman-Zadrowski; Joseph Hernandez; Vani Potluri; Liguo Wang; Wei Li; Danielle G. Lemay

Background Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. Methodology/Principal Findings Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. Conclusions/Significance A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the full functional capacity of the mammary gland.


Journal of Mammary Gland Biology and Neoplasia | 2010

Epigenetic Modifications in 3D: Nuclear Organization of the Differentiating Mammary Epithelial Cell

Clemence Kress; Maria Ballester; Eve Devinoy; Monique Rijnkels

During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. It has recently been shown that the 3D spatial organization of chromosomes in the nucleus also plays a role in genome function. Indeed, the eukaryotic interphase nucleus contains sub-domains that are characterized by their enrichment in specific factors such as RNA Polymerase II, splicing machineries or heterochromatin proteins which render portions of the genome differentially permissive to gene expression. The positioning of individual genes relative to these sub-domains is thought to participate in the control of gene expression as an epigenetic mechanism acting in the nuclear space. Here, we review what is known about the sub-nuclear organization of mammary epithelial cells in connection with gene expression and epigenetics. Throughout differentiation, global changes in nuclear architecture occur, notably with respect to heterochromatin distribution. The positions of mammary-specific genes relative to nuclear sub-compartments varies in response to hormonal stimulation. The contribution of tissue architecture to cell differentiation in the mammary gland is also seen at the level of nuclear organization, which is sensitive to microenvironmental stimuli such as extracellular matrix signaling. In addition, alterations in nuclear organization are concomitant with immortalization and carcinogenesis. Thus, the fate of cells appears to be controlled by complex pathways connecting external signal integration, gene expression, epigenetic modifications and chromatin organization in the nucleus.


Experimental Cell Research | 2008

Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes

Mohammad Bagher Montazer-Torbati; Cathy Hue-Beauvais; Stéphanie Droineau; Maria Ballester; Nicolas Coant; Etienne Aujean; Marie Petitbarat; Monique Rijnkels; Eve Devinoy

Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expression parallels variations in the chromatin structure and DNA methylation profile throughout the Ramp3-WAP-Tbrg4 locus. Three Matrix Attachment Regions (MAR) have been predicted in this locus. Two of them are located between regions exhibiting open and closed chromatin structures in the liver. The third, located around the transcription start site of the Tbrg4 gene, interacts with topoisomerase II in HC11 mouse mammary cells, and in these cells anchors the chromatin loop to the nuclear matrix. Furthermore, if lactogenic hormones are present in these cells, the chromatin loop surrounding the WAP gene is more tightly attached to the nuclear structure, as observed after a high salt treatment of the nuclei and the formation of nuclear halos. Taken together, our results point to a combination of several epigenetic events that may explain the differential expression pattern of the WAP locus in relation to tissue and developmental stages.


Physiological Genomics | 2011

Short-term administration of rhGH increases markers of cellular proliferation but not milk protein gene expression in normal lactating women

Patricia Delfin Maningat; Partha Sen; Monique Rijnkels; Darryl L. Hadsell; Molly S. Bray; Morey W. Haymond

Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7-10 days.

Collaboration


Dive into the Monique Rijnkels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darryl L. Hadsell

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Rosen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eve Devinoy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret C. Neville

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Molly S. Bray

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Morey W. Haymond

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge