Mono Pirun
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mono Pirun.
Nature | 2012
Felicity C. Jones; Manfred Grabherr; Yingguang Frank Chan; Pamela Russell; Evan Mauceli; Jeremy A. Johnson; Ross Swofford; Mono Pirun; Michael C. Zody; Simon D. M. White; Ewan Birney; Stephen M. J. Searle; Jeremy Schmutz; Jane Grimwood; Mark Dickson; Richard M. Myers; Craig T. Miller; Brian R. Summers; Anne K. Knecht; Shannon D. Brady; Haili Zhang; Alex A. Pollen; Timothy R. Howes; Chris T. Amemiya; Eric S. Lander; Federica Di Palma; Kerstin Lindblad-Toh; David M. Kingsley
Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.
Science | 2012
Gopa Iyer; Aphrothiti J. Hanrahan; Matthew I. Milowsky; Hikmat Al-Ahmadie; Sasinya N. Scott; Manickam Janakiraman; Mono Pirun; Chris Sander; Nicholas D. Socci; Irina Ostrovnaya; Agnes Viale; Adriana Heguy; Luke Peng; Timothy A. Chan; Bernard H. Bochner; Dean F. Bajorin; Michael F. Berger; Barry S. Taylor; David B. Solit
Tumor genome sequencing reveals the molecular basis of a patient’s unexpected and dramatic response to a cancer drug. Cancer drugs often induce dramatic responses in a small minority of patients. We used whole-genome sequencing to investigate the genetic basis of a durable remission of metastatic bladder cancer in a patient treated with everolimus, a drug that inhibits the mTOR (mammalian target of rapamycin) signaling pathway. Among the somatic mutations was a loss-of-function mutation in TSC1 (tuberous sclerosis complex 1), a regulator of mTOR pathway activation. Targeted sequencing revealed TSC1 mutations in about 8% of 109 additional bladder cancers examined, and TSC1 mutation correlated with everolimus sensitivity. These results demonstrate the feasibility of using whole-genome sequencing in the clinical setting to identify previously occult biomarkers of drug sensitivity that can aid in the identification of patients most likely to respond to targeted anticancer drugs.
Nature Genetics | 2011
Thomas Wiesner; Anna C. Obenauf; Rajmohan Murali; Isabella Fried; Klaus G. Griewank; Peter Ulz; Christian Windpassinger; Werner Wackernagel; Shea Loy; Ingrid H. Wolf; Agnes Viale; Alex E. Lash; Mono Pirun; Nicholas D. Socci; Arno Rütten; Gabriele Palmedo; David H. Abramson; Kenneth Offit; Arthur Ott; Jürgen C. Becker; Lorenzo Cerroni; Heinz Kutzner; Boris C. Bastian; Michael R. Speicher
Common acquired melanocytic nevi are benign neoplasms that are composed of small, uniform melanocytes and are typically present as flat or slightly elevated pigmented lesions on the skin. We describe two families with a new autosomal dominant syndrome characterized by multiple, skin-colored, elevated melanocytic tumors. In contrast to common acquired nevi, the melanocytic neoplasms in affected family members ranged histopathologically from epithelioid nevi to atypical melanocytic proliferations that showed overlapping features with melanoma. Some affected individuals developed uveal or cutaneous melanomas. Segregating with this phenotype, we found inactivating germline mutations of BAP1, which encodes a ubiquitin carboxy-terminal hydrolase. The majority of melanocytic neoplasms lost the remaining wild-type allele of BAP1 by various somatic alterations. In addition, we found BAP1 mutations in a subset of sporadic melanocytic neoplasms showing histological similarities to the familial tumors. These findings suggest that loss of BAP1 is associated with a clinically and morphologically distinct type of melanocytic neoplasm.
Genome Biology | 2013
Franck Rapaport; Raya Khanin; Yupu Liang; Mono Pirun; Azra Krek; Paul Zumbo; Christopher E. Mason; Nicholas D. Socci; Doron Betel
A large number of computational methods have been developed for analyzing differential gene expression in RNA-seq data. We describe a comprehensive evaluation of common methods using the SEQC benchmark dataset and ENCODE data. We consider a number of key features, including normalization, accuracy of differential expression detection and differential expression analysis when one condition has no detectable expression. We find significant differences among the methods, but note that array-based methods adapted to RNA-seq data perform comparably to methods designed for RNA-seq. Our results demonstrate that increasing the number of replicate samples significantly improves detection power over increased sequencing depth.
PLOS ONE | 2014
Marc P. Hoeppner; Andrew L. Lundquist; Mono Pirun; Jennifer R. S. Meadows; Neda Zamani; Jeremy Johnson; Görel Sundström; April Cook; Michael Fitzgerald; Ross Swofford; Evan Mauceli; Behrooz Torabi Moghadam; Anna Greka; Jessica Alföldi; Amr Abouelleil; Lynne Aftuck; Daniel Bessette; Aaron M. Berlin; Adam Brown; Gary Gearin; Annie Lui; J. Pendexter Macdonald; Margaret Priest; Terrance Shea; Jason Turner-Maier; Andrew Zimmer; Eric S. Lander; Federica Di Palma; Kerstin Lindblad-Toh; Manfred Grabherr
The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∼20,700 high-confidence protein coding loci, we found ∼4,600 antisense transcripts overlapping exons of protein coding genes, ∼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts.
Cancer Discovery | 2014
Hikmat Al-Ahmadie; Gopa Iyer; Marcel Hohl; Saurabh Asthana; Akiko Inagaki; Nikolaus Schultz; Aphrothiti J. Hanrahan; Sasinya N. Scott; A. Rose Brannon; Gregory McDermott; Mono Pirun; Irina Ostrovnaya; Philip H. Kim; Nicholas D. Socci; Agnes Viale; Gary K. Schwartz; Victor E. Reuter; Bernard H. Bochner; Jonathan E. Rosenberg; Dean F. Bajorin; Michael F. Berger; John H.J. Petrini; David B. Solit; Barry S. Taylor
UNLABELLED Metastatic solid tumors are almost invariably fatal. Patients with disseminated small-cell cancers have a particularly unfavorable prognosis, with most succumbing to their disease within two years. Here, we report on the genetic and functional analysis of an outlier curative response of a patient with metastatic small-cell cancer to combined checkpoint kinase 1 (CHK1) inhibition and DNA-damaging chemotherapy. Whole-genome sequencing revealed a clonal hemizygous mutation in the Mre11 complex gene RAD50 that attenuated ATM signaling which in the context of CHK1 inhibition contributed, via synthetic lethality, to extreme sensitivity to irinotecan. As Mre11 mutations occur in a diversity of human tumors, the results suggest a tumor-specific combination therapy strategy in which checkpoint inhibition in combination with DNA-damaging chemotherapy is synthetically lethal in tumor cells but not normal cells with somatic mutations that impair Mre11 complex function. SIGNIFICANCE Strategies to effect deep and lasting responses to cancer therapy in patients with metastatic disease have remained difficult to attain, especially in early-phase clinical trials. Here, we present an in-depth genomic and functional genetic analysis identifying RAD50 hypomorphism as a contributing factor to a curative response to systemic combination therapy in a patient with recurrent, metastatic small-cell cancer.
Nature Genetics | 2014
Shinji Kohsaka; Neerav Shukla; Nabahet Ameur; Tatsuo Ito; Charlotte K.Y. Ng; Lu Wang; Diana Lim; Angela Marchetti; Agnes Viale; Mono Pirun; Nicholas D. Socci; Li Xuan Qin; Raf Sciot; Julia A. Bridge; Samuel Singer; Paul A. Meyers; Leonard H. Wexler; Frederic G. Barr; Snjezana Dogan; Jonathan A. Fletcher; Jorge S. Reis-Filho; Marc Ladanyi
Rhabdomyosarcoma, a cancer of skeletal muscle lineage, is the most common soft-tissue sarcoma in children. Major subtypes of rhabdomyosarcoma include alveolar (ARMS) and embryonal (ERMS) tumors. Whereas ARMS tumors typically contain translocations generating PAX3-FOXO1 or PAX7-FOXO1 fusions that block terminal myogenic differentiation, no functionally comparable genetic event has been found in ERMS tumors. Here we report the discovery, through whole-exome sequencing, of a recurrent somatic mutation encoding p.Leu122Arg in the myogenic transcription factor MYOD1 in a distinct subset of ERMS tumors with poor outcomes that also often contain mutations altering PI3K-AKT pathway components. Previous mutagenesis studies had shown that MYOD1 with a p.Leu122Arg substitution can block wild-type MYOD1 function and bind to MYC consensus sequences, suggesting a possible switch from differentiation to proliferation. Our functional data now confirm this prediction. Thus, MYOD1 p.Leu122Arg defines a subset of rhabdomyosarcomas eligible for high-risk protocols and the development of targeted therapeutics.
Proceedings of the National Academy of Sciences of the United States of America | 2016
David G. McFadden; Katerina Politi; Arjun Bhutkar; Frances K. Chen; Xiaoling Song; Mono Pirun; Philip M. Santiago; Caroline Kim-Kiselak; James T. Platt; Emily Lee; Emily Hodges; Adam Rosebrock; Roderick T. Bronson; Nicholas D. Socci; Gregory J. Hannon; Tyler Jacks; Harold E. Varmus
Significance Knowledge of oncogenic alterations that drive lung adenocarcinoma formation has enabled the development of genetically engineered mouse models that are increasingly being used to study the biology and therapeutic vulnerabilities of this disease. Given the importance of genomic alterations in these processes in human lung cancer, information on the mutational landscape of the mouse tumors is valuable for the design and interpretation of these experiments. In this study, we compared whole-exome sequencing data from lung adenocarcinomas induced by different lung adenocarcinoma-associated drivers. In contrast to their human counterparts, oncogene-driven lung adenocarcinomas in genetically engineered mouse models harbor few somatic mutations. These results have important implications for the use of these models to study tumor progression and response and resistance to therapy. Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.
Leukemia | 2015
Jonathan H. Schatz; Steven M. Horwitz; Julie Teruya-Feldstein; Matthew A. Lunning; Agnes Viale; Kety Huberman; Nicholas D. Socci; N. Lailler; Adriana Heguy; Igor Dolgalev; Jocelyn C. Migliacci; Mono Pirun; Maria Lia Palomba; David M. Weinstock; H-G Wendel
Targeted mutational profiling of peripheral T-cell lymphoma not otherwise specified highlights new mechanisms in a heterogeneous pathogenesis
Oncotarget | 2015
Rajmohan Murali; Raghu Chandramohan; Inga Möller; Simone L. Scholz; Michael F. Berger; Kety Huberman; Agnes Viale; Mono Pirun; Nicholas D. Socci; Nancy Bouvier; Sebastian Bauer; Monika Artl; Bastian Schilling; Tobias Schimming; Antje Sucker; Benjamin Schwindenhammer; Florian Grabellus; Michael R. Speicher; Jörg Schaller; Uwe Hillen; Dirk Schadendorf; Thomas Mentzel; Donavan T. Cheng; Thomas Wiesner; Klaus G. Griewank
Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas.