Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monte Hunter is active.

Publication


Featured researches published by Monte Hunter.


Arthritis Research & Therapy | 2016

Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis

Joseph Withrow; Cameron Murphy; Yutao Liu; Monte Hunter; Sadanand Fulzele; Mark W. Hamrick

Osteoarthritis (OA) and rheumatoid arthritis (RA) are both debilitating diseases that cause significant morbidity in the US population. Extracellular vesicles (EVs), including exosomes and microvesicles, are now recognized to play important roles in cell-to-cell communication by transporting various proteins, microRNAs (miRNAs), and mRNAs. EV-derived proteins and miRNAs impact cell viability and cell differentiation, and are likely to play a prominent role in the pathophysiology of both OA and RA. Some of the processes by which these membrane-bound vesicles can alter joint tissue include extracellular matrix degradation, cell-to-cell communication, modulation of inflammation, angiogenesis, and antigen presentation. For example, EVs from IL-1β-stimulated fibroblast-like synoviocytes have been shown to induce osteoarthritic changes in chondrocytes. RA models have shown that EVs stimulated with inflammatory cytokines are capable of inducing apoptosis resistance in T cells, presenting antigen to T cells, and causing extracellular damage with matrix-degrading enzymes. EVs derived from rheumatoid models have also been shown to induce secretion of COX-2 and stimulate angiogenesis. Additionally, there is evidence that synovium-derived EVs may be promising biomarkers of disease in both OA and RA. The characterization of EVs in the joint space has also opened up the possibility for delivery of small molecules. This article reviews current knowledge on the role of EVs in both RA and OA, and their potential role as therapeutic targets for modulation of these debilitating diseases.


Clinical and translational medicine | 2016

Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis

John Burke; Monte Hunter; Ravindra Kolhe; Carlos M. Isales; Mark W. Hamrick; Sadanand Fulzele

Osteoarthritis (OA) is a chronic degenerative disease affecting articular cartilage in joints, and it is a leading cause of disability in the United States. Current pharmacological treatment strategies are ineffective to prevent the OA progression; however, cellular therapies have the potential to regenerate the lost cartilage, combat cartilage degeneration, provide pain relief, and improve patient mobility. One of the most promising sources of cellular regenerative medicine is from mesenchymal stem cells (MSCs). MSCs can be isolated from adipose tissue, bone marrow, synovial tissue, and other sources. The aim of this review is to compile recent advancement in cellular based therapy more specifically in relation to MSCs in the treatment of osteoarthritis.


Molecular and Cellular Endocrinology | 2015

Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells

Mona El Refaey; Christopher P. Watkins; Eileen J. Kennedy; Andrew Chang; Qing Zhong; Ke Hong Ding; Xing Ming Shi; Jianrui Xu; Wendy B. Bollag; William D. Hill; Maribeth H. Johnson; Monte Hunter; Mark W. Hamrick; Carlos M. Isales

Age-induced bone loss is associated with greater bone resorption and decreased bone formation resulting in osteoporosis and osteoporosis-related fractures. The etiology of this age-induced bone loss is not clear but has been associated with increased generation of reactive oxygen species (ROS) from leaky mitochondria. ROS are known to oxidize/damage the surrounding proteins/amino acids/enzymes and thus impair their normal function. Among the amino acids, the aromatic amino acids are particularly prone to modification by oxidation. Since impaired osteoblastic differentiation from bone marrow mesenchymal stem cells (BMMSCs) plays a role in age-related bone loss, we wished to examine whether oxidized amino acids (in particular the aromatic amino acids) modulated BMMSC function. Using mouse BMMSCs, we examined the effects of the oxidized amino acids di-tyrosine and kynurenine on proliferation, differentiation and Mitogen-Activated Protein Kinase (MAPK) pathway. Our data demonstrate that amino acid oxides (in particular kynurenine) inhibited BMMSC proliferation, alkaline phosphatase expression and activity and the expression of osteogenic markers (Osteocalcin and Runx2). Taken together, our data are consistent with a potential pathogenic role for oxidized amino acids in age-induced bone loss.


Journal of Orthopaedic Research | 2010

Role of Myostatin (GDF-8) Signaling in the Human Anterior Cruciate Ligament

Sadanand Fulzele; Phonepasong Arounleut; Matthew D. Cain; Samuel Herberg; Monte Hunter; Karl H. Wenger; Mark W. Hamrick

Myostatin, also referred to as growth and differentiation factor‐8 (GDF‐8), is expressed in muscle tissue where it functions to suppress myoblast proliferation and myofiber hypertrophy. Recently, myostatin and its receptor, the type IIB activin receptor (ActRIIB), were detected in the leg tendons of mice, and recombinant myostatin was shown to increase cellular proliferation and the expression of type 1 collagen in primary fibroblasts from mouse tendons. We sought to determine whether myostatin and its receptor were present in human anterior cruciate ligament (ACL) tissue, and if myostatin treatment had any effect on primary ACL fibroblasts. ACL tissue samples were obtained from material discarded during ACL reconstruction surgery. Real‐time PCR and immunohistochemistry demonstrate that both myostatin and its receptor are abundant in the human ACL. Primary fibroblasts isolated from human ACL specimens were treated with recombinant myostatin, and myostatin treatment increased fibroblast proliferation as well as the expression of tenascin C (TNC), type 1 collagen, and transforming growth factor‐β1. Real‐time PCR analysis of TNC and type 1 collagen expression in ACL specimens from normal mice and mice lacking myostatin supported these findings by showing that both TNC and type 1 collagen were downregulated in ACL tissue from myostatin‐deficient mice. Together, these data suggest that myostatin is a pro‐fibrogenic factor that enhances cellular proliferation and extracellular matrix synthesis by ACL fibroblasts. Recombinant myostatin may therefore have therapeutic applications in the area of tendon and ligament engineering and regeneration.


Scientific Reports | 2017

Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis

Ravindra Kolhe; Monte Hunter; Siyang Liu; Ravirajsinh N. Jadeja; Chetan Pundkar; Ashis Mondal; Bharati Mendhe; Michelle Drewry; Mumtaz V. Rojiani; Yutao Liu; Carlos M. Isales; Robert E. Guldberg; Mark W. Hamrick; Sadanand Fulzele

The pathogenesis of osteoarthritis (OA) is poorly understood, and therapeutic approaches are limited to preventing progression of the disease. Recent studies have shown that exosomes play a vital role in cell-to-cell communication, and pathogenesis of many age-related diseases. Molecular profiling of synovial fluid derived exosomal miRNAs may increase our understanding of OA progression and may lead to the discovery of novel biomarkers and therapeutic targets. In this article we report the first characterization of exosomes miRNAs from human synovial fluid. The synovial fluid exosomes share similar characteristics (size, surface marker, miRNA content) with previously described exosomes in other body fluids. MiRNA microarray analysis showed OA specific exosomal miRNA of male and female OA. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified gender-specific target genes/signaling pathways. These pathway analyses showed that female OA specific miRNAs are estrogen responsive and target TLR (toll-like receptor) signaling pathways. Furthermore, articular chondrocytes treated with OA derived extracellular vesicles had decreased expression of anabolic genes and elevated expression of catabolic and inflammatory genes. In conclusion, synovial fluid exosomal miRNA content is altered in patients with OA and these changes are gender specific.


Stem Cells International | 2016

Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics.

John Burke; Ravindra Kolhe; Monte Hunter; Carlos M. Isales; Mark W. Hamrick; Sadanand Fulzele

Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells) have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to combat local cellular stress. Because of this, there are vast benefits that medicine can obtain from stem cell-derived exosomes. If exosomes could be extracted from stem cells in an efficient manner and packaged with particular regenerative products, then diseases such as rheumatoid arthritis, osteoarthritis, bone fractures, and other maladies could be treated with cell-free regenerative medicine via exosomes. Many advances must be made to get to this point, and the following review highlights the current advances of stem cell-derived exosomes with particular attention to regenerative medicine in orthopaedics.


Journal of Bone and Mineral Research | 2017

Kynurenine, a Tryptophan Metabolite that Accumulates with Age, Induces Bone Loss†

Mona El Refaey; Meghan E. McGee-Lawrence; Sadanand Fulzele; Eileen J. Kennedy; Wendy B. Bollag; Mohammed E. Elsalanty; Qing Zhong; Ke Hong Ding; Nathaniel G. Bendzunas; Xing Ming Shi; Jianrui Xu; William D. Hill; Maribeth H. Johnson; Monte Hunter; Jessica L. Pierce; Kanglun Yu; Mark W. Hamrick; Carlos M. Isales

Age‐dependent bone loss occurs in humans and in several animal species, including rodents. The underlying causal mechanisms are probably multifactorial, although an age‐associated increase in the generation of reactive oxygen species has been frequently implicated. We previously reported that aromatic amino acids function as antioxidants, are anabolic for bone, and that they may potentially play a protective role in an aging environment. We hypothesized that upon oxidation the aromatic amino acids would not only lose their anabolic effects but also potentially become a catabolic byproduct. When measured in vivo in C57BL/6 mice, the tryptophan oxidation product and kynurenine precursor, N‐formylkynurenine (NFK), was found to increase with age. We tested the direct effects of feeding kynurenine (kyn) on bone mass and also tested the short‐term effects of intraperitoneal kyn injection on bone turnover in CD‐1 mice. μCT analyses showed kyn‐induced bone loss. Levels of serum markers of osteoclastic activity (pyridinoline [PYD] and RANKL) increased significantly with kyn treatment. In addition, histological and histomorphometric studies showed an increase in osteoclastic activity in the kyn‐treated groups in both dietary and injection‐based studies. Further, kyn treatment significantly increased bone marrow adiposity, and BMSCs isolated from the kyn‐injected mice exhibited decreased mRNA expression of Hdac3 and its cofactor NCoR1 and increased expression of lipid storage genes Cidec and Plin1. A similar pattern of gene expression is observed with aging. In summary, our data show that increasing kyn levels results in accelerated skeletal aging by impairing osteoblastic differentiation and increasing osteoclastic resorption. These data would suggest that kyn could play a role in age‐induced bone loss.


Stem Cell Research | 2015

The crucial role of vitamin C and its transporter (SVCT2) in bone marrow stromal cell autophagy and apoptosis.

Rajnikumar Sangani; Sudharsan Periyasamy-Thandavan; Rajneesh Pathania; Saif Ahmad; Ammar Kutiyanawalla; Ravindra Kolhe; Maryka H. Bhattacharyya; Norman B. Chutkan; Monte Hunter; William D. Hill; Mark W. Hamrick; Carlos M. Isales; Sadanand Fulzele

Vitamin C is an antioxidant that plays a vital role in various biological processes including bone formation. Previously, we reported that vitamin C is transported into bone marrow stromal cells (BMSCs) through the sodium dependent Vitamin C Transporter 2 (SVCT2) and this transporter plays an important role in osteogenic differentiation. Furthermore, this transporter is regulated by oxidative stress. To date, however, the exact role of vitamin C and its transporter (SVCT2) in ROS regulated autophagy and apoptosis in BMSCs is poorly understood. In the present study, we observed that oxidative stress decreased survival of BMSCs in a dose-dependent manner and induced growth arrest in the G1 phase of the cell cycle. These effects were accompanied by the induction of autophagy, confirmed by P62 and LC3B protein level and punctate GFP-LC3B distribution. The supplementation of vitamin C significantly rescued the BMSCs from oxidative stress by regulating autophagy. Knockdown of the SVCT2 transporter in BMSCs synergistically decreased cell survival even under low oxidative stress conditions. Also, supplementing vitamin C failed to rescue cells from stress. Our results reveal that the SVCT2 transporter plays a vital role in the mechanism of BMSC survival under stress conditions. Altogether, this study has given new insight into the role of the SVCT2 transporter in oxidative stress related autophagy and apoptosis in BMSCs.


Clinical and translational medicine | 2018

Recent advances in hyaluronic acid based therapy for osteoarthritis

Steven Bowman; Mohamed E. Awad; Mark W. Hamrick; Monte Hunter; Sadanand Fulzele

Osteoarthritis is a debilitating disease that has increased in prevalence across the world due to the aging population. Currently, physicians use a plethora of treatment strategies to try and slow down the progression of the disease, but none have been shown to ubiquitously treat and cure the disease. One of the strategies uses the high molecular weight molecule hyaluronic acid as either an injectable or oral supplement for treatment. Hyaluronic acid (HA) is a relatively new treatment that has shown varied results through several clinical trials. It can be used as a scaffold for engineering new treatments and several new preparations have just been added to the market. A comprehensive search was conducted through several search databases according our inclusion and exclusion criteria. This review included 44 prospective clinical trial investigating the feasibility and efficacy of HA injection for knee, hip, and ankle osteoarthritis. This review will take a closer look at hyaluronic acid and its properties, as well clinical effectiveness and future options.


Molecular Aspects of Medicine | 2017

Emerging role of extracellular vesicles in musculoskeletal diseases

Cameron Murphy; Joseph Withrow; Monte Hunter; Yutao Liu; Yaoliang Tang; Sadanand Fulzele; Mark W. Hamrick

Research into the biology of extracellular vesicles (EVs), including exosomes and microvesicles, has expanded significantly with advances in EV isolation techniques, a better understanding of the surface markers that characterize exosomes and microvesicles, and greater information derived from -omics approaches on the proteins, lipids, mRNAs, and microRNAs (miRNAs) transported by EVs. We have recently discovered a role for exosome-derived miRNAs in age-related bone loss and osteoarthritis, two conditions that impose a significant public health burden on the aging global population. Previous work has also revealed multiple roles for EVs and their miRNAs in muscle regeneration and congenital myopathies. Thus, EVs appear to be involved in a number of degenerative conditions that impact the musculoskeletal system, indicating that the musculoskeletal system is an excellent model for investigating the role of EVs in tissue maintenance and repair. This review highlights the role of EVs in bone, skeletal muscle, and joint health, including both normal tissue metabolism as well as tissue injury repair and regeneration. A consistent theme that emerges from study of musculoskeletal EVs is that various miRNAs appear to mediate a number of key pathological processes. These findings point to a potential therapeutic opportunity to target EV-derived miRNAs as a strategy for improving musculoskeletal function.

Collaboration


Dive into the Monte Hunter's collaboration.

Top Co-Authors

Avatar

Mark W. Hamrick

Health Science University

View shared research outputs
Top Co-Authors

Avatar

Sadanand Fulzele

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravindra Kolhe

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

William D. Hill

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bharati Mendhe

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Jianrui Xu

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

John Burke

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Ke Hong Ding

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge