Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monte J. Radeke is active.

Publication


Featured researches published by Monte J. Radeke.


Progress in Retinal and Eye Research | 2010

The Pivotal Role of the Complement System in Aging and Age-related Macular Degeneration: Hypothesis Re-visited

Don H. Anderson; Monte J. Radeke; Natasha Gallo; Ethan A. Chapin; P.T. Johnson; Christy R. Curletti; Lisa S. Hancox; Jane Hu; J.N. Ebright; Goldis Malek; Michael A. Hauser; Catherine Bowes Rickman; Dean Bok; Gregory S. Hageman; Lincoln V. Johnson

During the past ten years, dramatic advances have been made in unraveling the biological bases of age-related macular degeneration (AMD), the most common cause of irreversible blindness in western populations. In that timeframe, two distinct lines of evidence emerged which implicated chronic local inflammation and activation of the complement cascade in AMD pathogenesis. First, a number of complement system proteins, complement activators, and complement regulatory proteins were identified as molecular constituents of drusen, the hallmark extracellular deposits associated with early AMD. Subsequently, genetic studies revealed highly significant statistical associations between AMD and variants of several complement pathway-associated genes including: Complement factor H (CFH), complement factor H-related 1 and 3 (CFHR1 and CFHR3), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3). In this article, we revisit our original hypothesis that chronic local inflammatory and immune-mediated events at the level of Bruchs membrane play critical roles in drusen biogenesis and, by extension, in the pathobiology of AMD. Secondly, we report the results of a new screening for additional AMD-associated polymorphisms in a battery of 63 complement-related genes. Third, we identify and characterize the local complement system in the RPE-choroid complex - thus adding a new dimension of biological complexity to the role of the complement system in ocular aging and AMD. Finally, we evaluate the most salient, recent evidence that bears directly on the role of complement in AMD pathogenesis and progression. Collectively, these recent findings strongly re-affirm the importance of the complement system in AMD. They lay the groundwork for further studies that may lead to the identification of a transcriptional disease signature of AMD, and hasten the development of new therapeutic approaches that will restore the complement-modulating activity that appears to be compromised in genetically susceptible individuals.


The Journal of Comparative Neurology | 1997

Immunocytochemical localization of TrkB in the central nervous system of the adult rat

Qiao Yan; Monte J. Radeke; Christine R. Matheson; Jane Talvenheimo; Andrew A. Welcher; Stuart C. Felnstein

The TrkB family of transmembrane proteins serve as receptors for brain‐derived neurotrophic factor (BDNF), neurotrophin (NT)‐4/5, and possibly NT‐3, three members of the neurotrophin family of neurotrophic factors. In order to understand the potential roles played by these receptors, we have examined the distribution of the TrkB receptor proteins in the adult rat brain by using immunohistochemistry. Several different antisera, directed against either synthetic peptides corresponding to different regions of TrkB or a recombinant fusion protein comprising part of the extracellular domain, were generated. Each of these antisera was directed to epitopes found on all known TrkB isoforms (both the tyrosine kinase‐possessing isoform and the truncated kinase‐lacking isoforms). In addition, a commercially available antibody to the intracellular domain of TrkB was also used. Widespread and distinct staining was observed on the surface of neuronal cell bodies, axons, and dendrites in many structures, including the cerebral cortex, hippocampus, dentate gyrus, striatum, septal nuclei, substantia nigra, cerebellar Purkinje cells, brainstem and spinal motor neurons, and brainstem sensory nuclei. Staining was also observed in the pia matter, on a subpopulation of ependymal cells lining the cerebral ventricle wall, and other nonneuronal cells. The expression pattern of TrkB receptor protein suggests that TrkB plays a broad role in the central nervous system. In addition, the detection of TrkB immunoreactivity on cell bodies and dendrites is consistent with recent models suggesting that neurotrophins may be derived from presynaptic and/or autocrine sources in addition to the classical postsynaptic target. J Comp Neurol 378:135–157, 1997. 1997


Proceedings of the National Academy of Sciences of the United States of America | 2002

The Alzheimer's Aβ-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration

Lincoln V. Johnson; William P. Leitner; Alexander J. Rivest; Michelle K Staples; Monte J. Radeke; Don H. Anderson

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in older individuals worldwide. The disease is characterized by abnormal extracellular deposits, known as drusen, that accumulate along the basal surface of the retinal pigmented epithelium. Although drusen deposition is common in older individuals, large numbers of drusen and/or extensive areas of confluent drusen represent a significant risk factor for AMD. Widespread drusen deposition is associated with retinal pigmented epithelial cell dysfunction and degeneration of the photoreceptor cells of the neural retina. Recent studies have shown that drusen contain a variety of immunomodulatory molecules, suggesting that the process of drusen formation involves local inflammatory events, including activation of the complement cascade. Similar observations in Alzheimers disease (AD) have lead to the hypothesis that chronic localized inflammation is an important element of AD pathogenesis, with significant neurodegenerative consequences. Accordingly, the amyloid beta (Aβ) peptide, a major constituent of neuritic plaques in AD, has been implicated as a primary activator of complement in AD. Here we show that Aβ is associated with a substructural vesicular component within drusen. Aβ colocalizes with activated complement components in these “amyloid vesicles,” thereby identifying them as potential primary sites of complement activation. Thus, Aβ deposition could be an important component of the local inflammatory events that contribute to atrophy of the retinal pigmented epithelium, drusen biogenesis, and the pathogenesis of AMD.


The Journal of Comparative Neurology | 1996

Developmental and mature expression of full‐length and truncated TrkB, receptors in the rat forebrain

Robert H. Fryer; David R. Kaplan; Stuart C. Feinstein; Monte J. Radeke; Dennis R. Grayson; Lawrence F. Kromer

The neurotrophins brain‐derived neurotrophic factor (BDNF) and NT‐4/5 exert their trophic effects on the nervous system via signaling through trkB receptors. These receptors occur as splice variants of the trkB gene that encodes a full‐length receptor containing the signal transducing tyrosine kinase domain as well as truncated forms lacking this domain. Because the importance of the trkB isoforms for development and maturation of the nervous system is unknown, we have examined the expression of trkB receptor isoforms during development of the rat forebrain using 1) a sensitive ribonuclease protection assay to distinguish full‐length and truncated trkB transcripts, 2) western blot analysis to characterize developmental changes in trkB proteins, and 3) immunohistochemistry to determine the cellular localization of trkB receptors. In the rat forebrain, adult mRNA levels for full‐length trkB are reached by birth, whereas truncated trkB message does not peak until postnatal days 10–15. Western blot analysis indicates that full‐length trkB protein is the major form during early development, whereas truncated trkB protein predominates in all forebrain regions of late postnatal and adult rats. These data also suggest that the glycosylation state of these receptors changes during postnatal maturation. TrkB immunoreactivity is present predominately within neurons, where it is localized to axons, cell soma, and dendrites. Strong dendritic immunostaining is particularly evident in certain neuronal populations, such as pyramidal neurons in the hippocampus and in layer V of the neocortex. The dendritic localization of trkB receptors supports the hypothesis that dendrites, as well as axons, are important sites for neurotrophin actions in the central nervous system.


Annals of Medicine | 2006

Extended haplotypes in the complement factor H (CFH) and CFH‐related (CFHR) family of genes protect against age‐related macular degeneration: Characterization, ethnic distribution and evolutionary implications

Gregory S. Hageman; Lisa S. Hancox; Andrew J. Taiber; Karen M. Gehrs; Don H. Anderson; Lincoln V. Johnson; Monte J. Radeke; David J. Kavanagh; Anna Richards; John P. Atkinson; Seppo Meri; Julie Bergeron; Jana Zernant; Joanna E. Merriam; Bert Gold; Rando Allikmets; Michael Dean

Background. Variants in the complement factor H gene (CFH) are associated with age‐related macular degeneration (AMD). CFH and five CFH‐related genes (CFHR1‐5) lie within the regulators of complement activation (RCA) locus on chromosome 1q32. Aims and Methods. In this study, the structural and evolutionary relationships between these genes and AMD was refined using a combined genetic, molecular and immunohistochemical approach. Results. We identify and characterize a large, common deletion that encompasses both the CFHR1 and CFHR3 genes. CFHR1, an abundant serum protein, is absent in subjects homozygous for the deletion. Genotyping analyses of AMD cases and controls from two cohorts demonstrates that deletion homozygotes comprise 1.1% of cases and 5.7% of the controls (chi‐square = 32.8; P = 1.6 E‐09). CFHR1 and CFHR3 transcripts are abundant in liver, but undetectable in the ocular retinal pigmented epithelium/choroid complex. AMD‐associated CFH/CFHR1/CFHR3 haplotypes are widespread in human populations. Conclusion. The absence of CFHR1 and/or CFHR3 may account for the protective effects conferred by some CFH haplotypes. Moreover, the high frequencies of the 402H allele and the delCFHR1/CFHR3 alleles in African populations suggest an ancient origin for these alleles. The considerable diversity accumulated at this locus may be due to selection, which is consistent with an important role for the CFHR genes in innate immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid

P.T. Johnson; K. E. Betts; Monte J. Radeke; Gregory S. Hageman; Don H. Anderson; Lincoln V. Johnson

Polymorphisms in the complement factor H gene (CFH) are associated with a significantly increased risk for, or protection against, the development of age-related macular degeneration (AMD). The most documented risk-conferring single-nucleotide polymorphism results in a tyrosine-to-histidine substitution at position 402 (Y402H) of the CFH protein. In this work, we examined the ocular distributions and relative abundance of CFH, several CFH-binding proteins, and abundant serum proteins in the retinal pigmented epithelium (RPE), Bruchs membrane, and choroid (RPE–choroid) in CFH homozygotes possessing either the “at-risk” 402HH or “normal” 402YY variants. Although CFH immunoreactivity is high in the choroid and in drusen, no differences in CFH-labeling patterns between genotypes are apparent. In contrast, at-risk individuals have significantly higher levels of the CFH-binding protein, C-reactive protein (CRP), in the choroidal stroma. Immunoblots confirm that at-risk individuals have ≈2.5-fold higher levels of CRP in the RPE–choroid; no significant differences in the levels of CFH or other serum proteins are detected. Similarly, we find no differences in CFH transcription levels in the RPE–choroid nor evidence for local ocular CRP transcription. Increased levels of CRP in the choroid may reflect a state of chronic inflammation that is a by-product of attenuated CFH complement-inhibitory activity in those who possess the CFH at-risk allele. Because the CRP-binding site in CFH lies within the domain containing the Y402H polymorphism, it is also possible that the AMD risk-conferring allele alters the binding properties of CFH, thereby leading to choroidal CRP deposition, contributing to AMD pathogenesis.


Genome Medicine | 2012

Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks.

Aaron M. Newman; Natasha Gallo; Lisa S. Hancox; Norma Miller; Carolyn M. Radeke; Michelle Maloney; James B. Cooper; Gregory S. Hageman; Don H. Anderson; Lincoln V. Johnson; Monte J. Radeke

Please see related commentary: http://www.biomedcentral.com/1741-7015/10/21/abstractBackgroundAge-related macular degeneration (AMD) is a leading cause of blindness that affects the central region of the retinal pigmented epithelium (RPE), choroid, and neural retina. Initially characterized by an accumulation of sub-RPE deposits, AMD leads to progressive retinal degeneration, and in advanced cases, irreversible vision loss. Although genetic analysis, animal models, and cell culture systems have yielded important insights into AMD, the molecular pathways underlying AMDs onset and progression remain poorly delineated. We sought to better understand the molecular underpinnings of this devastating disease by performing the first comparative transcriptome analysis of AMD and normal human donor eyes.MethodsRPE-choroid and retina tissue samples were obtained from a common cohort of 31 normal, 26 AMD, and 11 potential pre-AMD human donor eyes. Transcriptome profiles were generated for macular and extramacular regions, and statistical and bioinformatic methods were employed to identify disease-associated gene signatures and functionally enriched protein association networks. Selected genes of high significance were validated using an independent donor cohort.ResultsWe identified over 50 annotated genes enriched in cell-mediated immune responses that are globally over-expressed in RPE-choroid AMD phenotypes. Using a machine learning model and a second donor cohort, we show that the top 20 global genes are predictive of AMD clinical diagnosis. We also discovered functionally enriched gene sets in the RPE-choroid that delineate the advanced AMD phenotypes, neovascular AMD and geographic atrophy. Moreover, we identified a graded increase of transcript levels in the retina related to wound response, complement cascade, and neurogenesis that strongly correlates with decreased levels of phototransduction transcripts and increased AMD severity. Based on our findings, we assembled protein-protein interactomes that highlight functional networks likely to be involved in AMD pathogenesis.ConclusionsWe discovered new global biomarkers and gene expression signatures of AMD. These results are consistent with a model whereby cell-based inflammatory responses represent a central feature of AMD etiology, and depending on genetics, environment, or stochastic factors, may give rise to the advanced AMD phenotypes characterized by angiogenesis and/or cell death. Genes regulating these immunological activities, along with numerous other genes identified here, represent promising new targets for AMD-directed therapeutics and diagnostics.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration

Lincoln V. Johnson; David L. Forest; Christopher D. Banna; Carolyn M. Radeke; Michelle Maloney; Jane Hu; Christine N. Spencer; Aimee M. Walker; Marlene Tsie; Dean Bok; Monte J. Radeke; Don H. Anderson

We introduce a human retinal pigmented epithelial (RPE) cell-culture model that mimics several key aspects of early stage age-related macular degeneration (AMD). These include accumulation of sub-RPE deposits that contain molecular constituents of human drusen, and activation of complement leading to formation of deposit-associated terminal complement complexes. Abundant sub-RPE deposits that are rich in apolipoprotein E (APOE), a prominent drusen constituent, are formed by RPE cells grown on porous supports. Exposure to human serum results in selective, deposit-associated accumulation of additional known drusen components, including vitronectin, clusterin, and serum amyloid P, thus suggesting that specific protein–protein interactions contribute to the accretion of plasma proteins during drusen formation. Serum exposure also leads to complement activation, as evidenced by the generation of C5b-9 immunoreactive terminal complement complexes in association with APOE-containing deposits. Ultrastructural analyses reveal two morphologically distinct forms of deposits: One consisting of membrane-bounded multivescicular material, and the other of nonmembrane-bounded particle conglomerates. Collectively, these results suggest that drusen formation involves the accumulation of sub-RPE material rich in APOE, a prominent biosynthetic product of the RPE, which interacts with a select group of drusen-associated plasma proteins. Activation of the complement cascade appears to be mediated via the classical pathway by the binding of C1q to ligands in APOE-rich deposits, triggering direct activation of complement by C1q, deposition of terminal complement complexes and inflammatory sequelae. This model system will facilitate the analysis of molecular and cellular aspects of AMD pathogenesis, and the testing of new therapeutic agents for its treatment.


Experimental Eye Research | 2003

Evidence that ganglion cells react to retinal detachment

Francie E. Coblentz; Monte J. Radeke; Geoffrey P. Lewis; Steven K. Fisher

Growth associated protein 43 (GAP 43) is involved in synapse formation and it is expressed in the retina in a very specific pattern. Although GAP 43 is downregulated at the time of synapse formation, it can be re-expressed following injury such as axotomy or ischemia. Because of this we sought to characterize the expression of GAP 43 after retinal detachment (RD). Immunoblot, immunocytochemical and quantitative polymerase chain reaction (QPCR) techniques were used to assess the level of GAP 43 expression after experimental RD. GAP 43 was localized to three sublaminae of the inner plexiform layer of the normal retina. GAP 43 became upregulated in a subset of retinal ganglion cells following at least 7 days of RD. By immunoblot GAP 43 could be detected by 3 days. QPCR shows the upregulation of GAP 43 message by 6hr of detachment. To further characterize changes in ganglion cells, we used an antibody to neurofilament 70 and 200kDa (NF) proteins. Anti-NF labels horizontal cells, ganglion cell dendrites in the inner plexiform layer, and ganglion cell axons (fasicles) in the normal retina. Following detachment it is upregulated in horizontal cells and ganglion cells. When detached retina was double labelled with anti-GAP 43 and anti-NF, some cells were labelled with both markers, while others labelled with only one. We have previously shown that second order neurons respond to detachment; here we show that third order neurons are responding as well. Cellular remodelling of this type in response to detachment may explain the slow recovery of vision that often occurs after reattachment, or those changes that are often assumed to be permanent.


Human Genomics | 2011

Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration

Margaux A. Morrison; Alexandra C. Silveira; Nancy Huynh; Gyungah Jun; Silvia E. Smith; Fani Zacharaki; Hajime Sato; Stephanie Loomis; M. T. Andreoli; Scott M. Adams; Monte J. Radeke; Austin S. Jelcick; Yang Yuan; Aristoteles Tsiloulis; Dimitrios Z. Chatzoulis; Giuliana Silvestri; Maria G. Kotoula; Evangelia E. Tsironi; Bruce W. Hollis; Rui Chen; Neena B. Haider; Joan W. Miller; Lindsay A. Farrer; Gregory S. Hageman; Ivana K. Kim; Debra A. Schaumberg; Margaret M. DeAngelis

Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD) and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH) and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1), and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001). Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OH)D]) was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance.Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1) in this same family-based cohort. Initial findings were then validated and replicated in the extended family cohort, an unrelated case-control cohort from central Greece and a prospective nested case-control population from the Nurses Health Study and Health Professionals Follow-Up Studies, which included patients with all subtypes of AMD for a total of 2,528 individuals. Single point variants in CYP24A1 (the gene encoding the catabolising enzyme of the vitamin D pathway) were demonstrated to influence AMD risk after controlling for smoking history, sex and age in all populations, both separately and, more importantly, in a meta-analysis. This is the first report demonstrating a genetic association between vitamin D metabolism and AMD risk. These findings were also supplemented with expression data from human donor eyes and human retinal cell lines. These data not only extend previous biological studies in the AMD field, but further emphasise common antecedents between several disorders with an inflammatory/immunogenic component such as cardiovascular disease, cancer and AMD.

Collaboration


Dive into the Monte J. Radeke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Coffey

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean Bok

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Hu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge