Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monte L. Helm is active.

Publication


Featured researches published by Monte L. Helm.


Science | 2011

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s−1 for H2 Production

Monte L. Helm; Michael P. Stewart; R. Morris Bullock; M. Rakowski DuBois; Daniel L. DuBois

Precisely shaped basic ligands protect highly reactive protons and electrons to help accelerate catalytic hydrogen formation. Reduction of acids to molecular hydrogen as a means of storing energy is catalyzed by platinum, but its low abundance and high cost are problematic. Precisely controlled delivery of protons is critical in hydrogenase enzymes in nature that catalyze hydrogen (H2) production using earth-abundant metals (iron and nickel). Here, we report that a synthetic nickel complex, [Ni(PPh2NPh)2](BF4)2, (PPh2NPh = 1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane), catalyzes the production of H2 using protonated dimethylformamide as the proton source, with turnover frequencies of 33,000 per second (s−1) in dry acetonitrile and 106,000 s−1 in the presence of 1.2 M of water, at a potential of –1.13 volt (versus the ferrocenium/ferrocene couple). The mechanistic implications of these remarkably fast catalysts point to a key role of pendant amines that function as proton relays.


Inorganic Chemistry | 2011

Studies of a Series of [Ni(PR2NPh2)2(CH3CN)]2+ Complexes as Electrocatalysts for H2 Production: Substituent Variation at the Phosphorus Atom of the P2N2 Ligand

Uriah J. Kilgore; Michael P. Stewart; Monte L. Helm; William G. Dougherty; W. Scott Kassel; Mary Rakowski DuBois; Daniel L. DuBois; R. Morris Bullock

A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate.


Journal of the American Chemical Society | 2013

High catalytic rates for hydrogen production using nickel electrocatalysts with seven-membered cyclic diphosphine ligands containing one pendant amine

Michael P. Stewart; Ming Hsun Ho; Stefan Wiese; Mary Lou Lindstrom; Colleen E. Thogerson; Simone Raugei; R. Morris Bullock; Monte L. Helm

A series of Ni-based electrocatalysts, [Ni(7P(Ph)2N(C6H4X))2](BF4)2, featuring seven-membered cyclic diphosphine ligands incorporating a single amine base, 1-para-X-phenyl-3,6-triphenyl-1-aza-3,6-diphosphacycloheptane (7P(Ph)2N(C6H4X), where X = OMe, Me, Br, Cl, or CF3), have been synthesized and characterized. X-ray diffraction studies have established that the [Ni(7P(Ph)2N(C6H4X))2](2+) complexes have a square planar geometry, with bonds to four phosphorus atoms of the two bidentate diphosphine ligands. Each of the complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple, with turnover frequencies ranging from 2400 to 27,000 s(-1) with [(DMF)H](+) in acetonitrile. Addition of water (up to 1.0 M) accelerates the catalysis, giving turnover frequencies ranging from 4100 to 96,000 s(-1). Computational studies carried out on the [Ni(7P(Ph)2N(C6H4X))2](2+) family indicate the catalytic rates reach a maximum when the electron-donating character of X results in the pKa of the Ni(I) protonated pendant amine matching that of the acid used for proton delivery. Additionally, the fast catalytic rates for hydrogen production by the [Ni(7P(Ph)2N(C6H4X))2](2+) family relative to the analogous [Ni(P(Ph)2N(C6H4X)2)2](2+) family are attributed to preferred formation of endo protonated isomers with respect to the metal center in the former, which is essential to attain suitable proximity to the reduced metal center to generate H2. The results of this work highlight the importance of precise pKa matching with the acid for proton delivery to obtain optimal rates of catalysis.


Biochimica et Biophysica Acta | 2013

A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation☆

Wendy J. Shaw; Monte L. Helm; Daniel L. DuBois

This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


Chemical Communications | 2013

Production of H2 at fast rates using a nickel electrocatalyst in water–acetonitrile solutions

Wesley A. Hoffert; John A. S. Roberts; R. Morris Bullock; Monte L. Helm

We report a synthetic nickel complex containing proton relays, [Ni(P(Ph)2N(C6H4OH)2)2](BF4)2 (P(Ph)2N(C6H4OH)2 = 1,5-bis(p-hydroxyphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclo-octane), that catalyzes the production of H2 in aqueous acetonitrile with turnover frequencies of 750-170,000 s(-1) at experimentally determined overpotentials of 310-470 mV.


Inorganic Chemistry | 2016

Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen

Simone Raugei; Monte L. Helm; Sharon Hammes-Schiffer; Aaron M. Appel; Molly O’Hagan; Eric S. Wiedner; R. Morris Bullock

Understanding how to control the movement of protons and electrons is crucial to the design of fast, efficient electrocatalysts for H2 production and oxidation based on earth-abundant metals. Our work seeks to address fundamental questions about proton movement. We have demonstrated that incorporating a pendant amine functioning as a proton relay in the second coordination sphere of a metal complex helps proton mobility, resulting in faster and more energy-efficient catalysts. Proton-transfer reactions can be rate-limiting and are influenced by several factors, such as pKa values, steric effects, hydrogen bonding, and solvation/desolvation of the exogenous base and acid employed. The presence of multiple protonation sites introduces branching points along the catalytic cycle, making less productive pathways accessible or leading to the formation of stable off-cycle species. Using ligands with only one pendant amine mitigates this problem and results in catalysts with high rates for production of H2, although generally at higher overpotentials. For H2 oxidation catalysts, iron complexes with a high H2 binding affinity were developed. However, these iron complexes had a pKa mismatch between the protonated metal center and the protonated pendant amine, and consequently intramolecular proton movement was slow. Taken altogether, our results demonstrate the necessity of optimizing the entire catalytic cycle because optimization of a specific catalytic step can negatively influence another step and not necessarily lead to a better catalytic performance. We discuss a general procedure, based on thermodynamic arguments, which allows the simultaneous minimization of the free-energy change of each catalytic step, yielding a nearly flat free-energy surface, with no large barriers due to energy mismatches from either high- or low-energy intermediates.


Energy and Environmental Science | 2014

Electrocatalytic H2 production with a turnover frequency >107 s−1: the medium provides an increase in rate but not overpotential

Jianbo Hou; Ming Fang; Allan Jay P. Cardenas; Wendy J. Shaw; Monte L. Helm; R. Morris Bullock; John A. S. Roberts; Molly O'Hagan

Rapid proton movement results in exceptionally fast electrocatalytic H2 production (up to 3 × 107 s−1) at overpotentials of ∼400 mV when catalysed by [Ni(PPh2NC6H4x2)2]2+ complexes in an acidic ionic liquid–water medium ([(DMF)H]NTf2–H2O, χH2O = 0.71).


Inorganic Chemistry | 2012

Investigating the Role of the Outer-Coordination Sphere in [Ni(PPh2NPh-R2)2]2+ Hydrogenase Mimics

Avijita Jain; Matthew L. Reback; Mary Lou Lindstrom; Colleen E. Thogerson; Monte L. Helm; Aaron M. Appel; Wendy J. Shaw

A series of dipeptide substituted nickel complexes with the general formula, [Ni(P(Ph)(2)N(NNA-amino acid/ester)(2))(2)](BF(4))(2), have been synthesized and characterized (P(2)N(2) = 1,5-diaza-3,7-diphosphacyclooctane, and the dipeptide consists of the non-natural amino acid, 3-(4-aminophenyl)propionic acid (NNA), coupled to amino acid/esters = glutamic acid, alanine, lysine, and aspartic acid). Each of these complexes is an active electrocatalyst for H(2) production. The effects of the outer-coordination sphere on the catalytic activity for the production of H(2) were investigated; specifically, the impact of sterics, the ability of the side chain or backbone to protonate and the pK(a) values of the amino acid side chains were studied by varying the amino acids in the dipeptide. The catalytic rates of the different dipeptide substituted nickel complexes varied by over an order of magnitude. The amino acid derivatives display the fastest rates, while esterification of the terminal carboxylic acids and side chains resulted in a decrease in the catalytic rate by 50-70%, implicating a significant role of protonated sites in the outer-coordination sphere on catalytic activity. For both the amino acid and ester derivatives, the complexes with the largest substituents display the fastest rates, indicating that catalytic activity is not hindered by steric bulk. These studies demonstrate the significant contribution that the outer-coordination sphere can have in tuning the catalytic activity of small molecule hydrogenase mimics.


Chemical Science | 2014

Heterolytic Cleavage of H2 by Bifunctional Manganese(I) Complexes: Impact of Ligand Dynamics, Electrophilicity, and Base Positioning

Elliott B. Hulley; Monte L. Helm; R. Morris Bullock

We report the synthesis, characterization, and reactivity with H2 of a series of MnI complexes of the type [(P–P)Mn(L2)CO]+ (L2 = dppm, bppm, or (CO)2; P–P = PPhNMePPh or PPh2NBn2) that bear pendant amine ligands designed to function as proton relays. The pendant amine was found to function as a hemilabile ligand; its binding strength is strongly affected by the ancillary ligand environment around Mn. Tuning the electrophilicity of the Mn center leads to systems capable of reversible heterolytic cleavage of the H–H bond. The strength of pendant amine binding can be balanced to protect the Mn center while still leading to facile reactivity with H2. Neutral MnIH species bearing pendant amines in the diphosphine ligand were found to react with one-electron oxidants and, after proton and electron transfer reactions, regenerate cationic MnI species. The reactivity presented herein indicates that the Mn complexes we have developed are a promising platform for development of Mn-based H2 oxidation electrocatalysts.


Nano Letters | 2017

Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

Dongping Lu; Jinhui Tao; Pengfei Yan; Wesley A. Henderson; Qiuyan Li; Yuyan Shao; Monte L. Helm; Oleg Borodin; Gordon L. Graff; Bryant J. Polzin; Chong Min Wang; Mark H. Engelhard; Ji-Guang Zhang; James J. De Yoreo; Jun Liu; Jie Xiao

Li-ion batteries (LIB) have been successfully commercialized after the identification of ethylene-carbonate (EC)-containing electrolyte that can form a stable solid electrolyte interphase (SEI) on carbon anode surface to passivate further side reactions but still enable the transportation of the Li+ cation. These electrolytes are still utilized, with only minor changes, after three decades. However, the long-term cycling of LIB leads to continuous consumption of electrolyte and growth of SEI layer on the electrode surface, which limits the batterys life and performance. Herein, a new anode protection mechanism is reported in which, upon changing of the cell potential, the electrolyte components at the electrode-electrolyte interface reorganize reversibly to form a transient protective surface layers on the anode. This layer will disappear after the applied potential is removed so that no permanent SEI layer is required to protect the carbon anode. This phenomenon minimizes the need for a permanent SEI layer and prevents its continuous growth and therefore may lead to largely improved performance for LIBs.

Collaboration


Dive into the Monte L. Helm's collaboration.

Top Co-Authors

Avatar

R. Morris Bullock

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Aaron M. Appel

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel L. DuBois

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Simone Raugei

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wendy J. Shaw

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John A. S. Roberts

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Susie M. Miller

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Charles J. Weiss

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Elliott B. Hulley

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eric S. Wiedner

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge