Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monte S. Willis is active.

Publication


Featured researches published by Monte S. Willis.


Journal of Clinical Investigation | 2009

MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice

Thomas E. Callis; Kumar Pandya; Hee Young Seok; Ruhang Tang; Mariko Tatsuguchi; Zhan-Peng Huang; Jian-Fu Chen; Zhongliang Deng; Bronwyn M. Gunn; Janelle Shumate; Monte S. Willis; Craig H. Selzman; Da-Zhi Wang

MicroRNAs (miRNAs) are a class of small noncoding RNAs that have gained status as important regulators of gene expression. Here, we investigated the function and molecular mechanisms of the miR-208 family of miRNAs in adult mouse heart physiology. We found that miR-208a, which is encoded within an intron of alpha-cardiac muscle myosin heavy chain gene (Myh6), was actually a member of a miRNA family that also included miR-208b, which was determined to be encoded within an intron of beta-cardiac muscle myosin heavy chain gene (Myh7). These miRNAs were differentially expressed in the mouse heart, paralleling the expression of their host genes. Transgenic overexpression of miR-208a in the heart was sufficient to induce hypertrophic growth in mice, which resulted in pronounced repression of the miR-208 regulatory targets thyroid hormone-associated protein 1 and myostatin, 2 negative regulators of muscle growth and hypertrophy. Studies of the miR-208a Tg mice indicated that miR-208a expression was sufficient to induce arrhythmias. Furthermore, analysis of mice lacking miR-208a indicated that miR-208a was required for proper cardiac conduction and expression of the cardiac transcription factors homeodomain-only protein and GATA4 and the gap junction protein connexin 40. Together, our studies uncover what we believe are novel miRNA-dependent mechanisms that modulate cardiac hypertrophy and electrical conduction.


Journal of Clinical Investigation | 2007

Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins

Hui-Hua Li; Monte S. Willis; Pamela Lockyer; Nathaniel Miller; Holly McDonough; David J. Glass; Cam Patterson

Cardiac hypertrophy is a major cause of human morbidity and mortality. Although much is known about the pathways that promote hypertrophic responses, mechanisms that antagonize these pathways have not been as clearly defined. Atrogin-1, also known as muscle atrophy F-box, is an F-box protein that inhibits pathologic cardiac hypertrophy by participating in a ubiquitin ligase complex that triggers degradation of calcineurin, a factor involved in promotion of pathologic hypertrophy. Here we demonstrated that atrogin-1 also disrupted Akt-dependent pathways responsible for physiologic cardiac hypertrophy. Our results indicate that atrogin-1 does not affect the activity of Akt itself, but serves as a coactivator for members of the Forkhead family of transcription factors that function downstream of Akt. This coactivator function of atrogin-1 was dependent on its ubiquitin ligase activity and the deposition of polyubiquitin chains on lysine 63 of Foxo1 and Foxo3a. Transgenic mice expressing atrogin-1 in the heart displayed increased Foxo1 ubiquitylation and upregulation of known Forkhead target genes concomitant with suppression of cardiac hypertrophy, while mice lacking atrogin-1 displayed the opposite physiologic phenotype. These experiments define a role for lysine 63-linked ubiquitin chains in transcriptional coactivation and demonstrate that atrogin-1 uses this mechanism to disrupt physiologic cardiac hypertrophic signaling through its effects on Forkhead transcription factors.


Circulation Research | 2007

Muscle Ring Finger 1, but not Muscle Ring Finger 2, Regulates Cardiac Hypertrophy In Vivo

Monte S. Willis; Christopher Ike; Luge Li; Da-Zhi Wang; David J. Glass; Cam Patterson

Muscle ring finger (MuRF) proteins have been implicated in transmitting mechanical forces to cell signaling pathways through their interactions with the giant protein titin. Recent evidence has linked mechanically-induced stimuli with the control of serum response factor activity and localization through MuRF2. This observation is particularly intriguing in the context of cardiac hypertrophy, where serum response factor transactivation is a key event necessary for the induction of cardiac hypertrophy in response to increased afterload. We have previously reported that MuRF1, which is also a titin-associated protein, exerts antihypertrophic activity in vitro. In the present study, we induced cardiac hypertrophy in mice lacking MuRF1 and MuRF2 to distinguish the physiologic role of these divergent proteins in vivo. We identified for the first time that MuRF1, but not MuRF2, plays a key role in regulating the induction of cardiac hypertrophy, likely by its direct interactions with serum response factor. These studies describe for the first time distinct and nonoverlapping functional characteristics of MuRF1 and MuRF2 in response to cardiac stress in vivo.


American Journal of Clinical Pathology | 2005

Zinc-Induced Copper Deficiency A Report of Three Cases Initially Recognized on Bone Marrow Examination

Monte S. Willis; Sara A. Monaghan; Michael L. Miller; Robert W. McKenna; Wiley D. Perkins; Barry S. Levinson; Vikas Bhushan; Steven H. Kroft

Copper deficiency is a rare cause of sideroblastic anemia and neutropenia that often is not suspected clinically. The morphologic findings in bone marrow, while not pathognomonic, are sufficiently characteristic to suggest the diagnosis, leading to further testing to establish the correct diagnosis. Excess zinc ingestion is among the causes of copper deficiency. We present 3 cases of zinc-induced copper deficiency in which the diagnosis first was suggested on the basis of bone marrow examination. The first patient was a 47-year-old man with a debilitating peripheral neuropathy that had progressed during the previous 18 months, mild anemia, and severe neutropenia. The second was a 21-year-old man receiving zinc supplementation for acrodermatitis enteropathica in whom moderate normocytic anemia and neutropenia developed. The third patient was a 42-year-old man with anemia, severe neutropenia, and a peripheral neuropathy that had progressed during 8 months. The bone marrow findings in all cases suggested copper deficiency, which was confirmed by further laboratory testing and determined to be due to zinc excess. The morphologic features, clinical manifestations, differential diagnosis, and pathogenetic mechanisms are discussed.


The New England Journal of Medicine | 2013

Proteotoxicity and Cardiac Dysfunction — Alzheimer's Disease of the Heart?

Monte S. Willis; Cam Patterson

Defective disposal of misfolded proteins is involved in the pathogenesis of neurodegenerative diseases, cystic fibrosis, and heart failure. Experimental studies suggest that therapies that target misfolded proteins may have broad clinical application.


Circulation Research | 2010

Sent to Destroy: The Ubiquitin Proteasome System Regulates Cell Signaling and Protein Quality Control in Cardiovascular Development and Disease

Monte S. Willis; W. H. Davin Townley-Tilson; Eunice Y. Kang; Jonathon W. Homeister; Cam Patterson

The ubiquitin proteasome system (UPS) plays a crucial role in biological processes integral to the development of the cardiovascular system and cardiovascular diseases. The UPS prototypically recognizes specific protein substrates and places polyubiquitin chains on them for subsequent destruction by the proteasome. This system is in place to degrade not only misfolded and damaged proteins, but is essential also in regulating a host of cell signaling pathways involved in proliferation, adaptation to stress, regulation of cell size, and cell death. During the development of the cardiovascular system, the UPS regulates cell signaling by modifying transcription factors, receptors, and structural proteins. Later, in the event of cardiovascular diseases as diverse as atherosclerosis, cardiac hypertrophy, and ischemia/reperfusion injury, ubiquitin ligases and the proteasome are implicated in protecting and exacerbating clinical outcomes. However, when misfolded and damaged proteins are ubiquitinated by the UPS, their destruction by the proteasome is not always possible because of their aggregated confirmations. Recent studies have discovered how these ubiquitinated misfolded proteins can be destroyed by alternative “specific” mechanisms. The cytosolic receptors p62, NBR, and histone deacetylase 6 recognize aggregated ubiquitinated proteins and target them for autophagy in the process of “selective autophagy.” Even the ubiquitination of multiple proteins within whole organelles that drive the more general macro-autophagy may be due, in part, to similar ubiquitin-driven mechanisms. In summary, the crosstalk between the UPS and autophagy highlight the pivotal and diverse roles the UPS plays in maintaining protein quality control and regulating cardiovascular development and disease.


The EMBO Journal | 2012

Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair

Jinzhu Duan; Costin M. Gherghe; Dianxin Liu; Eric Hamlett; Luxman Srikantha; Laurel Rodgers; Jenna N. Regan; Mauricio Rojas; Monte S. Willis; Andrew Leask; Mark W. Majesky; Arjun Deb

Wnts are required for cardiogenesis but the role of specific Wnts in cardiac repair remains unknown. In this report, we show that a dynamic Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. Acute ischaemic cardiac injury upregulates Wnt1 that is initially expressed in the epicardium and subsequently by cardiac fibroblasts in the region of injury. Following cardiac injury, the epicardium is activated organ‐wide in a Wnt‐dependent manner, expands, undergoes epithelial–mesenchymal transition (EMT) to generate cardiac fibroblasts, which localize in the subepicardial space. The injured regions in the heart are Wnt responsive as well and Wnt1 induces cardiac fibroblasts to proliferate and express pro‐fibrotic genes. Disruption of downstream Wnt signalling in epicardial cells decreases epicardial expansion, EMT and leads to impaired cardiac function and ventricular dilatation after cardiac injury. Furthermore, disruption of Wnt/βcatenin signalling in cardiac fibroblasts impairs wound healing and decreases cardiac performance as well. These findings reveal that a pro‐fibrotic Wnt1/βcatenin injury response is critically required for preserving cardiac function after acute ischaemic cardiac injury.


Clinica Chimica Acta | 2003

The role of nutrition in preventing prostate cancer: a review of the proposed mechanism of action of various dietary substances

Monte S. Willis; Frank H. Wians

BACKGROUND Dietary modifications to prevent prostate cancer (PCa) continue to gain attention as research demonstrates that various dietary nutrients/supplements are related to decreased risk of developing prostate cancer (PCa). Several studies have focused on the antioxidant and nonantioxidant effects of various dietary substances in the prevention of PCa. Research into the mechanisms by which PCa is prevented, or its disease severity is reduced by dietary micronutrients and vitamins continues to enrich our understanding of the mechanisms by which PCa is initiated and progresses. METHODS We reviewed the literature on dietary nutrients with antioxidant properties that have been shown to have a positive effect in reducing the incidence or preventing the occurrence of PCa including carotenoids (e.g., lycopene), retinoids (e.g., vitamin A), vitamin E, vitamin C, selenium, and polyphenols. Other nutrients examined included vitamin D and calcium. RESULTS Many dietary micronutrients have demonstrated significant and complex effects on PCa cell proliferation, differentiation, and signaling related to the initiation, progression, and regression of PCa. CONCLUSION Understanding the mechanisms by which various dietary nutrients exert their effects on PCa may make it possible to design effective drugs for treating PCa and to promote better nutrition and lifestyle changes in those at risk for PCa.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy

Candace M. Adamo; Dao Fu Dai; Justin M. Percival; Elina Minami; Monte S. Willis; Enrico Patrucco; Stanley C. Froehner; Joseph A. Beavo

Duchenne muscular dystrophy (DMD) is a progressive and fatal genetic disorder of muscle degeneration. Patients with DMD lack expression of the protein dystrophin as a result of mutations in the X-linked dystrophin gene. The loss of dystrophin leads to severe skeletal muscle pathologies as well as cardiomyopathy, which manifests as congestive heart failure and arrhythmias. Like humans, dystrophin-deficient mice (mdx mice) show cardiac dysfunction as evidenced by a decrease in diastolic function followed by systolic dysfunction later in life. We have investigated whether sildenafil citrate (Viagra), a phosphodiesterase 5 (PDE5) inhibitor, can be used to ameliorate the age-related cardiac dysfunction present in the mdx mice. By using echocardiography, we show that chronic sildenafil treatment reduces functional deficits in the cardiac performance of aged mdx mice, with no effect on normal cardiac function in WT controls. More importantly, when sildenafil treatment was started after cardiomyopathy had developed, the established symptoms were rapidly reversed within a few days. It is recognized that PDE5 inhibitors can have cardioprotective effects in other models of cardiac damage, but the present study reports a prevention and reversal of pathological cardiac dysfunction as measured by functional analysis in a mouse model of DMD. Overall, the data suggest that PDE5 inhibitors may be a useful treatment for the cardiomyopathy affecting patients with DMD at early and late stages of the disease.


Cardiovascular Research | 2008

Build it up-Tear it down: protein quality control in the cardiac sarcomere.

Monte S. Willis; Jonathan C. Schisler; Andrea L. Portbury; Cam Patterson

The assembly and maintenance of the cardiac sarcomere, which contains the basic contractile components of actin and myosin, are essential for cardiac function. While often described as a static structure, the sarcomere is actually dynamic and undergoes constant turnover, allowing it to adapt to physiological changes while still maintaining function. A host of new factors have been identified that play a role in the regulation of protein quality control in the sarcomere, including chaperones that mediate the assembly of sarcomere components and ubiquitin ligases that control their specific degradation. There is clear evidence of sarcomere disorganization in animal models lacking muscle-specific chaperone proteins, illustrating the importance of these molecules in sarcomere structure and function. Although ubiquitin ligases have been found within the sarcomere structure itself, the role of the ubiquitin proteasome system in cardiac sarcomere regulation, and the factors that control its activity, are only just now being elucidated. The number of ubiquitin ligases identified with specificity for sarcomere proteins, each with distinct target substrates, is growing, allowing for tight regulation of this system. In this review, we highlight the dynamic interplay between sarcomere-specific chaperones and ubiquitin-dependent degradation of sarcomere proteins that is necessary in order to maintain structure and function of the cardiac sarcomere.

Collaboration


Dive into the Monte S. Willis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan C. Schisler

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Traci L. Parry

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

William E. Stansfield

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Megan T. Quintana

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jessica E. Rodríguez

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey M. Thiele

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lynell W. Klassen

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge