Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Montse Olivé is active.

Publication


Featured researches published by Montse Olivé.


Neurology | 2008

Distinct muscle imaging patterns in myofibrillar myopathies

D. Fischer; Rudolf A. Kley; K. Strach; C. Meyer; T. Sommer; K. Eger; A. Rolfs; W. Meyer; A. Pou; J. Pradas; C. M. Heyer; A. Grossmann; Angela Huebner; Wolfram Kress; Jens Reimann; Rolf Schröder; Bruno Eymard; Michel Fardeau; Bjarne Udd; Lev G. Goldfarb; Matthias Vorgerd; Montse Olivé

Objective: To compare muscle imaging findings in different subtypes of myofibrillar myopathies (MFM) in order to identify characteristic patterns of muscle alterations that may be helpful to separate these genetic heterogeneous muscular disorders. Methods: Muscle imaging and clinical findings of 46 patients with MFM were evaluated (19 desminopathy, 12 myotilinopathy, 11 filaminopathy, 1 αB-crystallinopathy, and 3 ZASPopathy). The data were collected retrospectively in 43 patients and prospectively in 3 patients. Results: In patients with desminopathy, the semitendinosus was at least equally affected as the biceps femoris, and the peroneal muscles were never less involved than the tibialis anterior (sensitivity of these imaging criteria to detect desminopathy in our cohort 100%, specificity 95%). In most of the patients with myotilinopathy, the adductor magnus showed more alterations than the gracilis muscle, and the sartorius was at least equally affected as the semitendinosus (sensitivity 90%, specificity 93%). In filaminopathy, the biceps femoris and semitendinosus were at least equally affected as the sartorius muscle, and the medial gastrocnemius was more affected than the lateral gastrocnemius. The semimembranosus mostly showed more alterations than the adductor magnus (sensitivity 88%, specificity 96%). Early adult onset and cardiac involvement was most often associated with desminopathy. In patients with filaminopathy, muscle weakness typically beginning in the 5th decade of life was mostly pronounced proximally, while late adult onset (>50 years) with distal weakness was more often present in myotilinopathy. Conclusions: Muscle imaging in combination with clinical data may be helpful for separation of distinct myofibrillar myopathy subtypes and in scheduling of genetic analysis.


American Journal of Human Genetics | 2010

Dominant Mutations in KBTBD13, a Member of the BTB/Kelch Family, Cause Nemaline Myopathy with Cores

Nyamkhishig Sambuughin; Kyle S. Yau; Montse Olivé; Rachael M. Duff; Munkhuu Bayarsaikhan; Shajia Lu; Laura González-Mera; Padma Sivadorai; Kristen J. Nowak; Gianina Ravenscroft; F.L. Mastaglia; Kathryn N. North; Biljana Ilkovski; H. Kremer; Martin Lammens; Baziel G.M. van Engelen; Vicki Fabian; Phillipa Lamont; M.R. Davis; Nigel G. Laing; Lev G. Goldfarb

We identified a member of the BTB/Kelch protein family that is mutated in nemaline myopathy type 6 (NEM6), an autosomal-dominant neuromuscular disorder characterized by the presence of nemaline rods and core lesions in the skeletal myofibers. Analysis of affected families allowed narrowing of the candidate region on chromosome 15q22.31, and mutation screening led to the identification of a previously uncharacterized gene, KBTBD13, coding for a hypothetical protein and containing missense mutations that perfectly cosegregate with nemaline myopathy in the studied families. KBTBD13 contains a BTB/POZ domain and five Kelch repeats and is expressed primarily in skeletal and cardiac muscle. The identified disease-associated mutations, C.742C>A (p.Arg248Ser), c.1170G>C (p.Lys390Asn), and c.1222C>T (p.Arg408Cys), located in conserved domains of Kelch repeats, are predicted to disrupt the molecules beta-propeller blades. Previously identified BTB/POZ/Kelch-domain-containing proteins have been implicated in a broad variety of biological processes, including cytoskeleton modulation, regulation of gene transcription, ubiquitination, and myofibril assembly. The functional role of KBTBD13 in skeletal muscle and the pathogenesis of NEM6 are subjects for further studies.


Advances in Experimental Medicine and Biology | 2008

Intermediate Filament Diseases: Desminopathy

Lev G. Goldfarb; Montse Olivé; Patrick Vicart; Hans H. Goebel

Desminopathy is one of the most common intermediate filament human disorders associated with mutations in closely interacting proteins, desmin and alphaB-crystallin. The inheritance pattern in familial desminopathy is characterized as autosomal dominant or autosomal recessive, but many cases have no family history. At least some and likely most sporadic desminopathy cases are associated with de novo DES mutations. The age of disease onset and rate of progression may vary depending on the type of inheritance and location of the causative mutation. Typically, the illness presents with lower and later upper limb muscle weakness slowly spreading to involve truncal, neck-flexor, facial and bulbar muscles. Skeletal myopathy is often combined with cardiomyopathy manifested by conduction blocks, arrhythmias and chronic heart failure resulting in premature sudden death. Respiratory muscle weakness is a major complication in some patients. Sections of the affected skeletal and cardiac muscles show abnormal fibre areas containing chimeric aggregates consisting of desmin and other cytoskeletal proteins. Various DES gene mutations: point mutations, an insertion, small in-frame deletions and a larger exon-skipping deletion, have been identified in desminopathy patients. The majority of these mutations are located in conserved alpha-helical segments, but additional mutations have recently been identified in the tail domain. Filament and network assembly studies indicate that most but not all disease-causing mutations make desmin assembly-incompetent and able to disrupt a pre-existing filamentous network in dominant-negative fashion. AlphaB-crystallin serves as a chaperone for desmin preventing its aggregation under various forms of stress; mutant CRYAB causes cardiac and skeletal myopathies identical to those resulting from DES mutations.


Journal of Neuropathology and Experimental Neurology | 2009

TAR DNA-Binding Protein 43 Accumulation in Protein Aggregate Myopathies

Montse Olivé; Anna Janué; Dolores Moreno; Josep Gamez; Benjamín Torrejón-Escribano; Isidre Ferrer

Protein aggregate myopathies, including myofibrillar myopathies and sporadic inclusion body myositis (sIBM), are characterized by abnormal protein aggregates composed of various muscular and ectopic proteins. Previous studies have shown the crucial role ofdysregulated transcription factors such as neuron-restrictive silencerfactor in the expression of aberrant proteins in myotilinopathies. Here, we assessed possible aberrant expression of TAR DNA-bindingprotein 43 (TDP-43), another factor involved in transcription regulation. TDP-43-immunoreactive intracytoplasmic inclusions were seen in all cases examined of myotilinopathy, desminopathy, and sIBM, and in 1 case of inclusion body myositis with Paget disease of bone and frontotemporal degeneration (IBMPFD). TAR DNA-binding protein 43 colocalized with myotilin and valosin in myotilinopathies and IBMPFD, respectively, but only occasionally colocalized with ubiquitin in myotilinopathies, desminopathies, sIBM, and IBMPFD; this indicates that accumulated TDP-43 is largely not ubiquitinated. Moreover, phosphorylated TDP-43 at Ser403/404 and Ser409/410 accumulated in the cytoplasm of vulnerable fibers but did not always colocalize with nonphosphorylated TDP-43. Cytoplasmic deposition was accompanied by decreased TDP-43 localization in the nuclei of affected fibers. These findings indicate that TDP-43 not only is another protein accumulated in myofibrillar myopathies, sIBM, and IBMPFD but also likely has a role through altered microRNA processing in the abnormal protein production, modification, and accumulation in protein aggregate myopathies.


Journal of the Neurological Sciences | 2004

Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies

Montse Olivé; Lev G. Goldfarb; Dolores Moreno; Encarna Laforet; Ayush Dagvadorj; Nyamkhishig Sambuughin; Juan Antonio Martı́nez-Matos; F Martinez; Josefina Alió; Eva Farrero; Patrick Vicart; Isidro Ferrer

Ten Spanish patients from six unrelated families diagnosed with desmin-related myopathy (DRM) were studied. The pattern of DRM inheritance was autosomal dominant in three families, autosomal recessive in one, and there was no family history in two cases. The disease onset was in early adulthood. Cardiac myopathy was the initial presentation in two patients, respiratory insufficiency in one, and lower limb weakness in all others. Cardiac involvement was observed in four patients. Lens opacities were found in four. CK level was normal or slightly elevated, and electrophysiological examination was consistent with myopathy. Muscle biopsies identified intracytoplasmic desmin-immunoreactive inclusions. In addition to desmin, synemin, actin, gelsolin, ubiquitin, alphaB-crystallin and amyloid betaA4 were also present in the deposits. Ultrastructural examination revealed areas of myofibrillary disruption, abnormal electron-dense structures and accumulations of granulofilamentous material. A missense R406W mutation and a novel single amino acid deletion in the desmin gene were identified in two patients; the other patients did not show mutations in desmin, synemin, syncoilin or alphaB-crystallin genes. Analysis of 10 Spanish DRM cases illustrates a wide clinical, myopathological and genetic spectrum of DRM, reinforcing the need for further exploration of genetic causes for this group of disorders.


European Journal of Human Genetics | 2009

In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy.

Alexey Shatunov; Montse Olivé; Zagaa Odgerel; Christine Stadelmann-Nessler; Kerstin Irlbacher; Frank van Landeghem; Munkhuu Bayarsaikhan; Hee-Suk Lee; Bertrand Goudeau; Patrick F. Chinnery; Volker Straub; David Hilton-Jones; Maxwell S Damian; Anna Kamińska; Patrick Vicart; Kate Bushby; Marinos C. Dalakas; Nyamkhishig Sambuughin; Isidro Ferrer; Hans H. Goebel; Lev G. Goldfarb

Myofibrillar myopathies (MFMs) are an expanding and increasingly recognized group of neuromuscular disorders caused by mutations in DES, CRYAB, MYOT, and ZASP. The latest gene to be associated with MFM was FLNC; a p.W2710X mutation in the 24th immunoglobulin-like repeat of filamin C was shown to be the cause of a distinct type of MFM in several German families. We studied an International cohort of 46 patients from 39 families with clinically and myopathologically confirmed MFM, in which DES, CRYAB, MYOT, and ZASP mutations have been excluded. In patients from an unrelated family a 12-nucleotide deletion (c.2997_3008del) in FLNC resulting in a predicted in-frame four-residue deletion (p.Val930_Thr933del) in the seventh repeat of filamin C was identified. Both affected family members, mother and daughter, but not unrelated control individuals, carried the p.Val930_Thr933del mutation. The mutation is transcribed and, based on myopathological features and immunoblot analysis, it leads to an accumulation of dysfunctional filamin C in the myocytes. The study results suggest that the novel p.Val930_Thr933del mutation in filamin C is the cause of MFM but also indicate that filamin C mutations are a comparatively rare cause of MFM.


Neuromuscular Disorders | 2011

Clinical and myopathological evaluation of early- and late-onset subtypes of myofibrillar myopathy

Montse Olivé; Zagaa Odgerel; Amaia Martínez; Juan José Poza; Federico García Bragado; Ramón Zabalza; Ivonne Jericó; Laura González-Mera; Alexey Shatunov; Hee Suk Lee; Judith Armstrong; Elías Maraví; Maria Ramos Arroyo; Jordi Pascual-Calvet; Carmen Navarro; Carmen Paradas; Mariano Huerta; Fabian Marquez; Eduardo Gutierrez Rivas; Adolf Pou; Isidre Ferrer; Lev G. Goldfarb

Myofibrillar myopathies (MFM) are a group of disorders associated with mutations in DES, CRYAB, MYOT, ZASP, FLNC, or BAG3 genes and characterized by disintegration of myofibrils and accumulation of degradation products into intracellular inclusions. We retrospectively evaluated 53 MFM patients from 35 Spanish families. Studies included neurologic exam, muscle imaging, light and electron microscopic analysis of muscle biopsy, respiratory function testing and cardiologic work-up. Search for pathogenic mutations was accomplished by sequencing of coding regions of the six genes known to cause MFM. Mutations in MYOT were the predominant cause of MFM in Spain affecting 18 of 35 families, followed by DES in 11 and ZASP in 3; in 3 families the cause of MFM remains undetermined. Comparative analysis of DES, MYOT and ZASP associated phenotypes demonstrates substantial phenotypic distinctions that should be considered in studies of disease pathogenesis, for optimization of subtype-specific treatments and management, and directing molecular analysis.


Journal of Neurology | 2004

A series of West European patients with severe cardiac and skeletal myopathy associated with a de novo R406W mutation in desmin

Ayush Dagvadorj; Montse Olivé; Jean-Andoni Urtizberea; Martin Halle; Alexey Shatunov; Carsten G. Bönnemann; Kye-Yoon Park; Hans H. Goebel; Isidro Ferrer; Patrick Vicart; Marinos C. Dalakas; Lev G. Goldfarb

Abstract.Desminopathy is a familial or sporadic cardiac and skeletal muscular dystrophy associated with mutations in desmin. We have previously characterized a de novo desmin R406W mutation in a patient of European origin with early onset muscle weakness in the lower extremities and atrioventricular conduction block requiring a permanent pacemaker. The disease relentlessly progressed resulting in severe incapacity within 5 years after onset. We have now identified three other patients with early onset rapidly progressive cardiac and skeletal myopathy caused by this same desmin R406W mutation. The mutation was present in each studied patient, but not in their parents or other unaffected family members, indicating that the mutation in all four cases was generated de novo. The patients’ mutationcarrying chromosomes showed no similarity, suggesting that the R406W mutation has occurred independently. These observations strongly confirm that the de novo R406W desmin mutation is the genetic basis for early-onset cardiac and skeletal myopathy in patients with sporadic disease and indicate that desmin position 406 is a hot spot for spontaneous mutations. The high pathogenic potential of this mutation can be explained by its location in the highly conserved YRKLLEGEE motif at the C-terminal end of the 2B helix that has a critical role in the process of desmin filament assembly.


Brain | 2012

Pathophysiology of protein aggregation and extended phenotyping in filaminopathy

Rudolf A. Kley; Piraye Serdaroglu-Oflazer; Yvonne Leber; Zagaa Odgerel; Peter F.M. van der Ven; Montse Olivé; Isidro Ferrer; Adekunle Onipe; Mariya Mihaylov; Juan M. Bilbao; Hee S. Lee; Jörg Höhfeld; Kristina Djinović-Carugo; Kester Kong; Martin Tegenthoff; Sören Peters; Werner Stenzel; Matthias Vorgerd; Lev G. Goldfarb; Dieter O. Fürst

Mutations in FLNC cause two distinct types of myopathy. Disease associated with mutations in filamin C rod domain leading to expression of a toxic protein presents with progressive proximal muscle weakness and shows focal destructive lesions of polymorphous aggregates containing desmin, myotilin and other proteins in the affected myofibres; these features correspond to the profile of myofibrillar myopathy. The second variant associated with mutations in the actin-binding domain of filamin C is characterized by weakness of distal muscles and morphologically by non-specific myopathic features. A frameshift mutation in the filamin C rod domain causing haploinsufficiency was also found responsible for distal myopathy with some myofibrillar changes but no protein aggregation typical of myofibrillar myopathies. Controversial data accumulating in the literature require re-evaluation and comparative analysis of phenotypes associated with the position of the FLNC mutation and investigation of the underlying disease mechanisms. This is relevant and necessary for the refinement of diagnostic criteria and developing therapeutic approaches. We identified a p.W2710X mutation in families originating from ethnically diverse populations and re-evaluated a family with a p.V930_T933del mutation. Analysis of the expanded database allows us to refine clinical and myopathological characteristics of myofibrillar myopathy caused by mutations in the rod domain of filamin C. Biophysical and biochemical studies indicate that certain pathogenic mutations in FLNC cause protein misfolding, which triggers aggregation of the mutant filamin C protein and subsequently involves several other proteins. Immunofluorescence analyses using markers for the ubiquitin-proteasome system and autophagy reveal that the affected muscle fibres react to protein aggregate formation with a highly increased expression of chaperones and proteins involved in proteasomal protein degradation and autophagy. However, there is a noticeably diminished efficiency of both the ubiquitin-proteasome system and autophagy that impairs the muscle capacity to prevent the formation or mediate the degradation of aggregates. Transfection studies of cultured muscle cells imitate events observed in the patients affected muscle and therefore provide a helpful model for testing future therapeutic strategies.


Brain Pathology | 2006

Involvement of clusterin and the aggresome in abnormal protein deposits in myofibrillar myopathies and inclusion body myositis.

Isidro Ferrer; Margarita Carmona; Rosa Blanco; Dolores Moreno; B. Torrejón-Escribano; Montse Olivé

Myofibrillar myopathies (MM) are characterized morphologically by the presence of non‐hyaline structures corresponding to foci of dissolution of myofibrils, and hyaline lesions composed of aggregates of compacted and degraded myofibrillar elements. Inclusion body myositis (IBM) is characterized by the presence of rimmed vacuoles, eosinophilic inclusions in the cytoplasm, rare intranuclear inclusions, and by the accumulation of several abnormal proteins. Recent studies have demonstrated impaired proteasomal expression and activity in MM and IBM, thus accounting, in part, for the abnormal protein accumulation in these diseases. The present study examines other factors involved in protein aggregation in MM and IBM. Clusterin is a multiple‐function protein which participates in Aβ‐amyloid, PrPres and α‐synuclein aggregation in Alzheimer disease, prionopathies and α‐synucleinopathies, respectively. γ‐Tubulin is present in the centrosome and is an intracellular marker of the aggresome. Moderate or strong clusterin immunoreactivity has been found in association with abnormal protein deposits, as revealed by immunohistochemistry, single and double‐labeling immunofluorescence and confocal microscopy, in MM and IBM, and in target structures in denervation atrophy. γ‐Tubulin has also been observed in association with abnormal protein deposits in MM, IBM, and in target fibers in denervation atrophy. These morphological findings are accompanied by increased expression of clusterin and γ‐tubulin in muscle homogenates of MM and IBM cases, as revealed by gel electrophoresis and Western blots. Together, these observations demonstrate involvement of clusterin in protein aggregates, and increased expression of aggresome markers in association with abnormal protein inclusions in MM and IBM and in targets, as crucial events related with the pathogenesis of abnormal protein accumulation and degradation in these muscular diseases.

Collaboration


Dive into the Montse Olivé's collaboration.

Top Co-Authors

Avatar

Lev G. Goldfarb

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Isidro Ferrer

Bellvitge University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey Shatunov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nyamkhishig Sambuughin

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge