Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moon-Yong Cha is active.

Publication


Featured researches published by Moon-Yong Cha.


PLOS ONE | 2012

Mitochondria-Specific Accumulation of Amyloid β Induces Mitochondrial Dysfunction Leading to Apoptotic Cell Death

Moon-Yong Cha; Sun-Ho Han; Sung Min Son; Hyun-Seok Hong; Young-Ju Choi; Jayoung Byun; Inhee Mook-Jung

Mitochondria are best known as the essential intracellular organelles that host the homeostasis required for cellular survival, but they also have relevance in diverse disease-related conditions, including Alzheimers disease (AD). Amyloid β (Aβ) peptide is the key molecule in AD pathogenesis, and has been highlighted in the implication of mitochondrial abnormality during the disease progress. Neuronal exposure to Aβ impairs mitochondrial dynamics and function. Furthermore, mitochondrial Aβ accumulation has been detected in the AD brain. However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain, and it is questionable whether mitochondrial Aβ accumulation followed by mitochondrial dysfunction leads directly to neuronal toxicity. This study demonstrated that an exogenous Aβ1–42 treatment, when applied to the hippocampal cell line of mice (specifically HT22 cells), caused a deleterious alteration in mitochondria in both morphology and function. A clathrin-mediated endocytosis blocker rescued the exogenous Aβ1–42-mediated mitochondrial dysfunction. Furthermore, the mitochondria-targeted accumulation of Aβ1–42 in HT22 cells using Aβ1–42 with a mitochondria-targeting sequence induced the identical morphological alteration of mitochondria as that observed in the APP/PS AD mouse model and exogenous Aβ1–42-treated HT22 cells. In addition, subsequent mitochondrial dysfunctions were demonstrated in the mitochondria-specific Aβ1–42 accumulation model, which proved indistinguishable from the mitochondrial impairment induced by exogenous Aβ1–42-treated HT22 cells. Finally, cellular toxicity was directly induced by mitochondria-targeted Aβ1–42 accumulation, which mimics the apoptosis process in exogenous Aβ1–42-treated HT22 cells. Taken together, these results indicate that mitochondria-targeted Aβ1–42 accumulation is the necessary and sufficient condition for Aβ-mediated mitochondria impairments, and leads directly to cellular death rather than along with other Aβ-mediated signaling alterations.


ACS Nano | 2016

Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer's Disease

Hyek Jin Kwon; Moon-Yong Cha; Dokyoon Kim; Dong Kyu Kim; Min Soh; Kwangsoo Shin; Taeghwan Hyeon; Inhee Mook-Jung

Mitochondrial oxidative stress is a key pathologic factor in neurodegenerative diseases, including Alzheimers disease. Abnormal generation of reactive oxygen species (ROS), resulting from mitochondrial dysfunction, can lead to neuronal cell death. Ceria (CeO2) nanoparticles are known to function as strong and recyclable ROS scavengers by shuttling between Ce(3+) and Ce(4+) oxidation states. Consequently, targeting ceria nanoparticles selectively to mitochondria might be a promising therapeutic approach for neurodegenerative diseases. Here, we report the design and synthesis of triphenylphosphonium-conjugated ceria nanoparticles that localize to mitochondria and suppress neuronal death in a 5XFAD transgenic Alzheimers disease mouse model. The triphenylphosphonium-conjugated ceria nanoparticles mitigate reactive gliosis and morphological mitochondria damage observed in these mice. Altogether, our data indicate that the triphenylphosphonium-conjugated ceria nanoparticles are a potential therapeutic candidate for mitochondrial oxidative stress in Alzheimers disease.


Neurobiology of Aging | 2014

Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model

Sung Hoon Baik; Moon-Yong Cha; Young-Min Hyun; Hansang Cho; Bashar Hamza; Dong Kyu Kim; Sun-Ho Han; Heesun Choi; Kyung Ho Kim; Minho Moon; Jeewoo Lee; Minsoo Kim; Daniel Irimia; Inhee Mook-Jung

Immune responses in the brain are thought to play a role in disorders of the central nervous system, but an understanding of the process underlying how immune cells get into the brain and their fate there remains unclear. In this study, we used a 2-photon microscopy to reveal that neutrophils infiltrate brain and migrate toward amyloid plaques in a mouse model of Alzheimers disease. These findings suggest a new molecular process underlying the pathophysiology of Alzheimers disease.


Experimental and Molecular Medicine | 2015

The role of mitochondrial DNA mutation on neurodegenerative diseases

Moon-Yong Cha; Dong Kyu Kim; Inhee Mook-Jung

Many researchers have reported that oxidative damage to mitochondrial DNA (mtDNA) is increased in several age-related disorders. Damage to mitochondrial constituents and mtDNA can generate additional mitochondrial dysfunction that may result in greater reactive oxygen species production, triggering a circular chain of events. However, the mechanisms underlying this vicious cycle have yet to be fully investigated. In this review, we summarize the relationship of oxidative stress-induced mitochondrial dysfunction with mtDNA mutation in neurodegenerative disorders.


Autophagy | 2016

Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease

Sung Min Son; Moon-Yong Cha; Hyuck Jae Choi; S. Kang; Myung-Shik Lee; Park Sa; Inhee Mook-Jung

ABSTRACT The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology.


Cell Death & Differentiation | 2013

Vitamin D-binding protein interacts with Aβ and suppresses Aβ-mediated pathology.

Moon M; Song H; Hong Hj; Nam Dw; Moon-Yong Cha; Oh Ms; Yu J; Hoon Ryu; Inhee Mook-Jung

The level of vitamin D-binding protein (DBP) is increased in the cerebrospinal fluid of patients with Alzheimer’s disease (AD), suggesting a relationship with its pathogenesis. In this study, we investigated whether and how DBP is related to AD using several different approaches. A pull-down assay and a surface plasmon resonance binding assay indicated direct interactions between purified DBP and amyloid beta (Aβ), which was confirmed in the brain of AD patients and transgenic AD model mice by immunoprecipitation assay and immunohistochemical double-staining method. Moreover, atomic force microscopic examination revealed that DBP reduced Aβ aggregation in vitro. DBP also prevented Aβ-mediated death in cultured mouse hippocampal HT22 cell line. Finally, DBP decreased Aβ-induced synaptic loss in the hippocampus and rescued memory deficits in mice after injection of Aβ into the lateral ventricle. These results provide converging evidence that DBP attenuates the harmful effects of Aβ by a direct interaction, and suggest that DBP is a promising therapeutic agent for the treatment of AD.


Journal of Alzheimer's Disease | 2014

Impaired hippocampal neurogenesis and its enhancement with ghrelin in 5XFAD mice.

Minho Moon; Moon-Yong Cha; Inhee Mook-Jung

Alzheimers disease (AD) is an age-related neurological disorder characterized by the deposition of amyloid-β (Aβ), cognitive deficits, and neuronal loss. The decline in neurogenic capacity could participate in neuronal vulnerability and contribute to memory impairment in AD. In our longitudinal study with AD model mice (5XFAD mice), we found that the number of doublecortin (neurogenesis marker)-positive cells in 5XFAD mice was significantly decreased compared to wild-type littermate mice. Using Aβ immunostaining with 4G8 antibody, we observed that impairment in neurogenesis might be associated with the deposits of amyloid plaques. To investigate the effect of the neurogenic hormone ghrelin on defective neurogenesis in the AD brain, 5XFAD mice were administered peripherally with ghrelin. We found that treatment with ghrelin increased the number of doublecortin, HH3, and calretinin-stained cells in the hippocampus of 5XFAD mice. In 5XFAD mice treated with ghrelin, the 4G8-positive area was not significantly different from the saline-treated 5XFAD mice. Together, these findings suggest that hippocampal neurogenesis is impaired in 5XFAD mice and that treatment with ghrelin successfully rescued the abnormality of neurogenesis in 5XFAD mice without affecting Aβ pathology.


Biochemistry | 2015

β-Amyloid and α-Synuclein Cooperate To Block SNARE-Dependent Vesicle Fusion

Bong-Kyu Choi; Jae-Yeol Kim; Moon-Yong Cha; Inhee Mook-Jung; Yeon-Kyun Shin; Nam Ki Lee

Alzheimers disease (AD) and Parkinsons disease (PD) are caused by β-amyloid (Aβ) and α-synuclein (αS), respectively. Ample evidence suggests that these two pathogenic proteins are closely linked and have a synergistic effect on eliciting neurodegenerative disorders. However, the pathophysiological consequences of Aβ and αS coexistence are still elusive. Here, we show that large-sized αS oligomers, which are normally difficult to form, are readily generated by Aβ42-seeding and that these oligomers efficiently hamper neuronal SNARE-mediated vesicle fusion. The direct binding of the Aβ-seeded αS oligomers to the N-terminal domain of synaptobrevin-2, a vesicular SNARE protein, is responsible for the inhibition of fusion. In contrast, large-sized Aβ42 oligomers (or aggregates) or the products of αS incubated without Aβ42 have no effect on vesicle fusion. These results are confirmed by examining PC12 cell exocytosis. Our results suggest that Aβ and αS cooperate to escalate the production of toxic oligomers, whose main toxicity is the inhibition of vesicle fusion and consequently prompts synaptic dysfunction.


Cell Death & Differentiation | 2015

CR6-interacting factor 1 is a key regulator in Aβ-induced mitochondrial disruption and pathogenesis of Alzheimer's disease.

Jayoung Byun; Sung Min Son; Moon-Yong Cha; Shong M; Yu Jin Hwang; Young Hoon Kim; Hoon Ryu; Moon M; Kim Ks; Inhee Mook-Jung

Mitochondrial dysfunction, often characterized by massive fission and other morphological abnormalities, is a well-known risk factor for Alzheimer’s disease (AD). One causative mechanism underlying AD-associated mitochondrial dysfunction is thought to be amyloid-β (Aβ), yet the pathways between Aβ and mitochondrial dysfunction remain elusive. In this study, we report that CR6-interacting factor 1 (Crif1), a mitochondrial inner membrane protein, is a key player in Aβ-induced mitochondrial dysfunction. Specifically, we found that Crif1 levels were downregulated in the pathological regions of Tg6799 mice brains, wherein overexpressed Aβ undergoes self-aggregation. Downregulation of Crif1 was similarly observed in human AD brains as well as in SH-SY5Y cells treated with Aβ. In addition, knockdown of Crif1, using RNA interference, induced mitochondrial dysfunction with phenotypes similar to those observed in Aβ-treated cells. Conversely, Crif1 overexpression prevented Aβ-induced mitochondrial dysfunction and cell death. Finally, we show that Aβ-induced downregulation of Crif1 is mediated by enhanced reactive oxygen species (ROS) and ROS-dependent sumoylation of the transcription factor specificity protein 1 (Sp1). These results identify the ROS-Sp1-Crif1 pathway to be a new mechanism underlying Aβ-induced mitochondrial dysfunction and suggest that ROS-mediated downregulation of Crif1 is a crucial event in AD pathology. We propose that Crif1 may serve as a novel therapeutic target in the treatment of AD.


Neurobiology of Aging | 2015

Thrombospondin-1 prevents amyloid beta-mediated synaptic pathology in Alzheimer's disease.

Sung Min Son; Dong Woo Nam; Moon-Yong Cha; Kyung Ho Kim; Jayoung Byun; Hoon Ryu; Inhee Mook-Jung

Alzheimers disease (AD) is characterized by impaired cognitive function and memory loss, which are often the result of synaptic pathology. Thrombospondin (TSP) is an astrocyte-secreted protein, well known for its function as a modulator of synaptogenesis and neurogenesis. Here, we investigated the effects of TSP-1 on AD pathogenesis. We found that the level of TSP-1 expression was decreased in AD brains. When we treated astrocytes with amyloid beta (Aβ), secreted TSP-1 was decreased in autophagy-dependent manner. In addition, treatment with Aβ induced synaptic pathology, such as decreased dendritic spine density and reduced synaptic activity. These effects were prevented by coincubation of TSP-1 with Aβ, which acts through the TSP-1 receptor alpha-2-delta-1 in neurons. Finally, intrasubicular injection with TSP-1 into AD model mouse brains mitigated the Aβ-mediated reduction of synaptic proteins and related signaling pathways. These results indicate that TSP-1 is a potential therapeutic target in AD pathogenesis.

Collaboration


Dive into the Moon-Yong Cha's collaboration.

Top Co-Authors

Avatar

Inhee Mook-Jung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Dong Kyu Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sung Min Son

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Dokyoon Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyek Jin Kwon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jayoung Byun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Hoon Baik

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Taeghwan Hyeon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge