Moonho Tak
Hanyang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Moonho Tak.
Journal of Physics: Condensed Matter | 2010
Jianbing Zhao; Patricia J. Culligan; Yu Qiao; Qulan Zhou; Yibing Li; Moonho Tak; Taehyo Park; Xi Chen
Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled. The mechanisms of the nanofluidic transport characteristics are explained by considering the unique molecular/ion structure formed inside the nanochannel. The lower shear resistance observed in some of the systems studies could be beneficial for nanoconductors, while the higher shear resistance (or higher effective viscosity) observed in other systems might enhance the performance of energy dissipation devices.
Energy and Environmental Science | 2011
Baoxing Xu; Yu Qiao; Taehyo Park; Moonho Tak; Qulan Zhou; Xi Chen
In a system containing nanoporous materials and liquids, the well-known thermo-capillary effect can be amplified by the ultralarge specific surface area of the nanopores. With appropriate temperature change, the relative wetting–dewetting transition can cause the liquid to flow in or out of the nanopores, and part of the thermal energy is converted to significant mechanical output. A conceptual design of such a thermal actuation/energy conversion/storage system is investigated in this paper, whose working mechanism, i.e. the thermally dependent infiltration behaviors of liquids into nanopores, is analyzed using molecular dynamics simulations. The fundamental molecular characteristics, including the density profile, contact angle, and surface tension of the confined liquid molecules, are examined in considerable detail. The influences of pore size, solid phase and liquid species are elucidated, which couple with the thermal effect. The energy density, power density, and efficiency of the thermal actuation system are evaluated. An infiltration experiment on a zeolite/water system is performed to qualitatively validate these findings.
Journal of Engineering Materials and Technology-transactions of The Asme | 2013
Moonho Tak; Duhee Park; Taehyo Park
On micro scale the constitutions of porous media are effected by other constitutions, so their behaviors are very complex and it is hard to derive theoretical formulations as well as to simulate on macro scale. For decades, in order to escape this complication, the phenomenological approaches in a field of multiscale methods have been extensively researched by many material scientists and engineers. Their theoretical approaches are based on the hierarchical multiscale methods using a priori knowledge on a smaller scale; however it has a drawback that an information loss can be occurred. Recently, according to a development of the core technologies of computer, the ways of multiscale are extended to a direct multiscale approach called the concurrent multiscale method. This approach is not necessary to deal with complex mathematical formulations, but it is noted as an important factor: development of computational coupling algorithms between constitutions in a porous medium. In this work, we attempt to develop coupling algorithms in different numerical methods finite element method (FEM), smoothed particle hydrodynamics (SPH) and discrete element method (DEM). Using this coupling algorithm, fluid flow, movement of solid particle, and contact forces between solid domains are computed via proposed discrete element which is based on SPH, FEM, and DEM. In addition, a mixed FEM on continuum level and discrete element model with SPH particles on discontinuum level is introduced, and proposed coupling algorithm is verified through numerical simulation.
Journal of the Computational Structural Engineering Institute of Korea | 2013
Moonho Tak; Yooseob Song; Hye-Kwan Jeon; Tae-Hyo Park
In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering | 2013
Dong-Ho Jung; Hyeonju Kim; Moonho Tak; Kyungjae Lee; Taehyo Park
A hybrid numerical scheme is developed to analyze the structural dynamic behavior of a large-diameter riser made of a laminated composite material. The global dynamic behavior of the riser, considered as a beam element subjected to a wave and current, is solved with the finite element analysis method in the time domain. The equivalent elastic modulus of a laminated composite riser for the global dynamic analysis is calculated from the stress-strain relation of a laminate structure with a different elastic modulus. For elements in large displacement and stresses estimated from the dynamic analysis, local structural analysis is performed with the finite element analysis method to examine the structural safety of the laminates of the composite riser, which is considered as a hexahedral element. The developed hybrid numerical tool can contribute to structural safety verification of large-diameter risers composed of laminated composites.Copyright
Computer Methods in Applied Mechanics and Engineering | 2013
Moonho Tak; Taehyo Park
Ksce Journal of Civil Engineering | 2010
Taehyo Park; Moonho Tak
Ksce Journal of Civil Engineering | 2005
Taehyo Park; Moonho Tak; Heedai Kim; Inchul Kong
Ksce Journal of Civil Engineering | 2005
Taehyo Park; Moonho Tak; Heedai Kim
Ksce Journal of Civil Engineering | 2005
Taehyo Park; Moonho Tak; Heedai Kim; Taebong Ahn