Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moonnoh R. Lee is active.

Publication


Featured researches published by Moonnoh R. Lee.


The Journal of Neuroscience | 2013

Adenosine Transporter ENT1 Regulates the Acquisition of Goal-Directed Behavior and Ethanol Drinking through A2A Receptor in the Dorsomedial Striatum

Hyung Wook Nam; David J. Hinton; Na Young Kang; Taehyun Kim; Moonnoh R. Lee; Alfredo Oliveros; Chelsea A. Adams; Christina L. Ruby; Doo Sup Choi

Adenosine signaling has been implicated in the pathophysiology of many psychiatric disorders including alcoholism. Striatal adenosine A2A receptors (A2AR) play an essential role in both ethanol drinking and the shift from goal-directed action to habitual behavior. However, direct evidence for a role of striatal A2AR signaling in ethanol drinking and habit development has not been established. In the present study, we found that decreased A2AR-mediated CREB activity in the dorsomedial striatum (DMS) enhanced initial behavioral acquisition of goal-directed behaviors and the vulnerability to progress to excessive ethanol drinking during operant conditioning in mice lacking ethanol-sensitive adenosine transporter ENT1 (ENT1−/−). Using mice expressing β-galactosidase (lacZ) under the control of seven repeated CRE sites in both genotypes (CRE-lacZ/ENT1+/+ mice and CRE-lacZ/ENT1−/− mice) and the dominant-negative form of CREB, we found that reduced CREB activity in the DMS was causally associated with decreased A2AR signaling and increased goal-directed ethanol drinking. Finally, we have demonstrated that the A2AR antagonist ZM241385 dampened protein kinase A activity–mediated signaling in the DMS and promoted excessive ethanol drinking in ENT1+/+ mice, but not in ENT1−/− mice. Our results indicate that A2AR-mediated CREB signaling in the DMS is a key determinant in enhancing the development of goal-directed ethanol drinking in mice.


Behavioural Brain Research | 2010

Altered glutamatergic neurotransmission in the striatum regulates ethanol sensitivity and intake in mice lacking ENT1

Jihuan Chen; Hyung Wook Nam; Moonnoh R. Lee; David J. Hinton; Sun Choi; Taehyun Kim; Tomoya Kawamura; Patricia H. Janak; Doo Sup Choi

Alcohol-sensitive type 1 equilibrative nucleoside transporter (ENT1) regulates adenosine-mediated glutamate neurotransmission in the brain. Our behavioral studies suggest that the diminished aversive effects of ethanol and the increased resistance to acute ethanol intoxication in mice lacking ENT1, could be related to increased voluntary ethanol self-seeking behavior. In addition, we found that ENT1 null mice were resistant to the ataxic effects of glutamate antagonists when tested on a rotarod. Using microdialysis experiments, we examined glutamate levels in the dorsal and ventral striatum in response to ethanol. In the dorsal striatum of ENT1 null mice, a low intoxicating dose of ethanol (1.5 g/kg) induced a greater increase of glutamate levels, while a higher hypnotic dose of ethanol (3.0 g/kg) decreased to a lesser degree the glutamate levels, compared with that of wild-type mice. In the ventral striatum, however, the low (1.5 g/kg) and the high (3.0 g/kg) ethanol doses altered glutamate levels similarly in both genotypes. Our results suggest that adenosine-regulated glutamatergic signaling contributes to a reduced level of alcohol response, which might be associated with a higher susceptibility for alcoholism in humans.


Biological Psychiatry | 2011

Type 1 Equilibrative Nucleoside Transporter Regulates Ethanol Drinking Through Accumbal N-Methyl-D-Aspartate Receptor Signaling

Hyung Wook Nam; Moonnoh R. Lee; Yu Zhu; Jinhua Wu; David J. Hinton; Sun Choi; Taehyun Kim; Nora Hammack; Jerry C. Yin; Doo Sup Choi

BACKGROUND Mice lacking type 1 equilibrative nucleoside transporter (ENT1(-/-)) exhibit increased ethanol-preferring behavior compared with wild-type littermates. This phenotype of ENT1(-/-) mice appears to be correlated with increased glutamate levels in the nucleus accumbens (NAc). However, little is known about the downstream consequences of increased glutamate signaling in the NAc. METHODS To investigate the significance of the deletion of ENT1 and its effect on glutamate signaling in the NAc, we employed microdialysis and iTRAQ proteomics. We validated altered proteins using Western blot analysis. We then examined the pharmacological effects of the inhibition of the N-methyl-D-aspartate (NMDA) glutamate receptor and protein kinase Cγ (PKCγ) on alcohol drinking in wild-type mice. In addition, we investigated in vivo cyclic adenosine monophosphate response element binding activity using cyclic adenosine monophosphate response element-β-galactosidase mice in an ENT1(-/-) background. RESULTS We identified that NMDA glutamate receptor-mediated downregulation of intracellular PKCγ-neurogranin-calcium-calmodulin dependent protein kinase type II signaling is correlated with reduced cyclic adenosine monophosphate response element binding activity in ENT1(-/-) mice. Inhibition of PKCγ promotes ethanol drinking in wild-type mice to levels similar to those of ENT1(-/-) mice. In contrast, an NMDA glutamate receptor antagonist reduces ethanol drinking of ENT1(-/-) mice. CONCLUSIONS These findings demonstrate that the genetic deletion or pharmacological inhibition of ENT1 regulates NMDA glutamate receptor-mediated signaling in the NAc, which provides a molecular basis that underlies the ethanol-preferring behavior of ENT1(-/-) mice.


Alcoholism: Clinical and Experimental Research | 2010

ENT1 Regulates Ethanol-Sensitive EAAT2 Expression and Function in Astrocytes

Jinhua Wu; Moonnoh R. Lee; Sun Choi; Taehyun Kim; Doo Sup Choi

BACKGROUND Equilibrative nucleoside transporter 1 (ENT1) and excitatory amino acid transporter 2 (EAAT2) are predominantly expressed in astrocytes where they are thought to regulate synaptic adenosine and glutamate levels. Because mice lacking ENT1 display increased glutamate levels in the ventral striatum, we investigated whether ENT1 regulates the expression and function of EAAT2 in astrocytes, which could contribute to altered glutamate levels in the striatum. METHODS We examined the effect of ENT1 inhibition and overexpression on the expression of EAAT2 using quantitative real-time PCR and measured glutamate uptake activity in cultured astrocytes. We also examined the effect of 0 to 200 mM ethanol doses for 0 to 24 hours of ethanol exposure on EAAT2 expression and glutamate uptake activity. We further examined the effect of ENT1 knockdown by a specific siRNA on ethanol-induced EAAT2 expression. RESULTS An ENT1-specific antagonist and siRNA treatments significantly reduced both EAAT2 expression and glutamate uptake activity while ENT1 overexpression up-regulated EAAT2 mRNA expression. Interestingly, 100 or 200 mM ethanol exposure increased EAAT2 mRNA expression as well as glutamate uptake activity. Moreover, we found that ENT1 knockdown inhibited the ethanol-induced EAAT2 up-regulation. CONCLUSIONS Our results suggest that ENT1 regulates glutamate uptake activity by altering EAAT2 expression and function, which might be implicated in ethanol intoxication and preference.


Neuropsychopharmacology | 2013

Striatal Adenosine Signaling Regulates EAAT2 and Astrocytic AQP4 Expression and Alcohol Drinking in Mice

Moonnoh R. Lee; Christina L. Ruby; David J. Hinton; Sun Choi; Chelsea A. Adams; Na Young Kang; Doo Sup Choi

Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.


Kidney International | 2014

Evidence of a third ADPKD locus is not supported by re-analysis of designated PKD3 families

Binu M. Paul; Mark B. Consugar; Moonnoh R. Lee; Jamie L. Sundsbak; Christina M. Heyer; Sandro Rossetti; Vickie Kubly; Katharina Hopp; Vicente E. Torres; Eliecer Coto; Maurizio Clementi; Nadja Bogdanova; Edgar de Almeida; Daniel G. Bichet; Peter C. Harris

Mutations to PKD1 and PKD2 are associated with autosomal dominant polycystic kidney disease (ADPKD). The absence of apparent PKD1/PKD2 linkage in five published European or North American families with ADPKD suggested a third locus, designated PKD3. Here we re-evaluated these families by updating clinical information, re-sampling where possible, and mutation screening for PKD1/PKD2. In the French-Canadian family we identified PKD1: p.D3782_V3783insD, with misdiagnoses in two individuals and sample contamination explaining the lack of linkage. In the Portuguese family, PKD1: p.G3818A segregated with the disease in 10 individuals in three generations with likely misdiagnosis in one individual, sample contamination, and use of distant microsatellite markers explaining the linkage discrepancy. The mutation, PKD2: c.213delC, was found in the Bulgarian family, with linkage failure attributed to false positive diagnoses in two individuals. An affected son but not the mother, in the Italian family had the nonsense mutation, PKD1: p.R4228X, which appeared de novo in the son; with simple cysts probably explaining the mother’s phenotype. No likely mutation was found in the Spanish family, but the phenotype was atypical with kidney atrophy in one case. Thus, re-analysis does not support the existence of a PKD3 in ADPKD. False positive diagnoses by ultrasound in all resolved families shows the value of mutation screening, but not linkage, to understand families with discrepant data.


PLOS ONE | 2011

Functional Role of the Polymorphic 647 T/C Variant of ENT1 (SLC29A1) and Its Association with Alcohol Withdrawal Seizures

Jeong Hyun Kim; Victor M. Karpyak; Joanna M. Biernacka; Hyung Wook Nam; Moonnoh R. Lee; Ulrich W. Preuss; Peter Zill; Gihyun Yoon; Colin L. Colby; David A. Mrazek; Doo Sup Choi

Background Adenosine is involved in several neurological and behavioral disorders including alcoholism. In cultured cell and animal studies, type 1 equilibrative nucleoside transporter (ENT1, slc29a1), which regulates adenosine levels, is known to regulate ethanol sensitivity and preference. Interestingly, in humans, the ENT1 (SLC29A1) gene contains a non-synonymous single nucleotide polymorphism (647 T/C; rs45573936) that might be involved in the functional change of ENT1. Principal Findings Our functional analysis showed that prolonged ethanol exposure increased adenosine uptake activity of mutant cells (ENT1-216Thr) compared to wild-type (ENT1-216Ile) transfected cells, which might result in reduced extracellular adenosine levels. We found that mice lacking ENT1 displayed increased propensity to ethanol withdrawal seizures compared to wild-type littermates. We further investigated a possible association of the 647C variant with alcoholism and the history of alcohol withdrawal seizures in subjects of European ancestry recruited from two independent sites. Analyses of the combined data set showed an association of the 647C variant and alcohol dependence with withdrawal seizures at the nominally significant level. Conclusions Together with the functional data, our findings suggest a potential contribution of a genetic variant of ENT1 to the development of alcoholism with increased risk of alcohol withdrawal-induced seizures in humans.


Biochemical and Biophysical Research Communications | 2011

Regulation of ethanol-sensitive EAAT2 expression through adenosine A1 receptor in astrocytes

Jinhua Wu; Moonnoh R. Lee; Taehyun Kim; Sandy Johng; Suzanne Rohrback; Nayoung Kang; Doo Sup Choi

Adenosine-regulated glutamate signaling in astrocytes is implicated in many neurological and neuropsychiatric disorders. In this study, we examined whether adenosine A1 receptor regulates EAAT2 expression in astrocytes using pharmacological agents and siRNAs. We found that adenosine A1 receptor-specific antagonist DPCPX or PSB36 decreased EAAT2 expression in a dose-dependent manner. Consistently, knockdown of A1 receptor in astrocytes decreased EAAT2 mRNA expression while overexpression of A1 receptor upregulated EAAT2 expression and function. Since A1 receptor activation is mainly coupled to inhibitory G-proteins and inhibits the activity of adenylate cyclase, we investigated the effect of forskolin, which activates adenylate cyclase activity, on EAAT2 mRNA levels. Interestingly, we found that forskolin reduced EAAT2 expression in dose- and time-dependent manners. In contrast, adenylate cyclase inhibitor SQ22536 increased EAAT2 expression in dose- and time-dependent manners. In addition, forskolin blocked ethanol-induced EAAT2 upregulation. Taken together, these results suggest that A1 receptor-mediated signaling regulates EAAT2 expression in astrocytes.


Neuroscience Letters | 2011

Acamprosate reduces ethanol drinking behaviors and alters the metabolite profile in mice lacking ENT1.

Moonnoh R. Lee; David J. Hinton; Jinhua Wu; Prasanna K. Mishra; John D. Port; Slobodan Macura; Doo Sup Choi

Acamprosate is clinically used to treat alcoholism. However, the precise molecular functionality of acamprosate in the central nervous system remains unclear, although it is known to antagonize glutamate action in the brain. Since elevated glutamate signaling, especially in the nucleus accumbens (NAc), is implicated in several aspects of alcoholism, we utilized mice lacking type 1 equilibrative nucleoside transporter (ENT1), which exhibit increased glutamate levels in the NAc as well as increased ethanol drinking behaviors. We found that acamprosate significantly reduced ethanol drinking of mice lacking ENT1 (ENT1(-/-)) while having no such effect in wild-type littermates. We then analyzed the basal and acamprosate-treated accumbal metabolite profiles of ENT1(-/-) and wild-type mice using in vivo 16.4T proton magnetic resonance spectroscopy (MRS). Our data show that basal glutamate+glutamine (Glx), glutamate, glutamine and N-acetylaspartatic acid (NAA) levels are increased in the nucleus accumbens (NAc) of ENT1(-/-) compared to wild-type mice. We then found that acamprosate treatment significantly reduced Glx and glutamine levels while increasing taurine levels in the NAc of only ENT1(-/-) compared to their saline-treated group while normalizing other metabolite compared to wild-type mice. This study will be useful in the understanding of the molecular basis of acamprosate in the brain.


Neuropharmacology | 2012

Ethanol withdrawal-induced brain metabolites and the pharmacological effects of acamprosate in mice lacking ENT1

David J. Hinton; Moonnoh R. Lee; Taylor L. Jacobson; Prasanna K. Mishra; Mark A. Frye; David A. Mrazek; Slobodan Macura; Doo Sup Choi

Acamprosate is clinically used to treat alcohol-dependent patients. While the molecular and pharmacological mechanisms of acamprosate remain unclear, it has been shown to regulate γ-aminobutyric acid (GABA) or glutamate levels in the cortex and striatum. To investigate the effect of acamprosate on brain metabolites in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), we employed in vivo 16.4 T proton magnetic resonance spectroscopy. We utilized type 1 equilibrative nucleoside transporter (ENT1) null mice since acamprosate attenuates ethanol drinking in these mice. Our findings demonstrated that ethanol withdrawal reduced GABA levels and increased phosphorylated choline compounds in the mPFC of both wild-type and ENT1 null mice. Notably, acamprosate normalized these withdrawal-induced changes only in ENT1 null mice. In the NAc, ethanol withdrawal increased glutamate and glutamine (Glx) levels only in wild-type mice. Interestingly, acamprosate reduced Glx levels in the NAc compared to the withdrawal state in both genotypes. These results provide a molecular basis for the pharmacological effect of acamprosate in the cortical-striatal circuit.

Collaboration


Dive into the Moonnoh R. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge