Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moosa Mohammadi is active.

Publication


Featured researches published by Moosa Mohammadi.


Nature Reviews Drug Discovery | 2009

The FGF family: biology, pathophysiology and therapy

Andrew Beenken; Moosa Mohammadi

The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.


Molecular Cell | 2000

Crystal Structure of a Ternary FGF-FGFR-Heparin Complex Reveals a Dual Role for Heparin in FGFR Binding and Dimerization

Joseph Schlessinger; Alexander N. Plotnikov; Omar A. Ibrahimi; Anna V. Eliseenkova; Brian K. Yeh; Avner Yayon; Robert J. Linhardt; Moosa Mohammadi

The crystal structure of a dimeric 2:2:2 FGF:FGFR:heparin ternary complex at 3 A resolution has been determined. Within each 1:1 FGF:FGFR complex, heparin makes numerous contacts with both FGF and FGFR, thereby augmenting FGF-FGFR binding. Heparin also interacts with FGFR in the adjoining 1:1 FGF:FGFR complex to promote FGFR dimerization. The 6-O-sulfate group of heparin plays a pivotal role in mediating both interactions. The unexpected stoichiometry of heparin binding in the structure led us to propose a revised model for FGFR dimerization. Biochemical data in support of this model are also presented. This model provides a structural basis for FGFR activation by small molecule heparin analogs and may facilitate the design of heparin mimetics capable of modulating FGF signaling.


Journal of Biological Chemistry | 2006

Receptor Specificity of the Fibroblast Growth Factor Family THE COMPLETE MAMMALIAN FGF FAMILY

Xiuqin Zhang; Omar A. Ibrahimi; Shaun K. Olsen; Hisashi Umemori; Moosa Mohammadi; David M. Ornitz

In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1–4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1–9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10–23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.


Journal of Clinical Investigation | 2007

The parathyroid is a target organ for FGF23 in rats

Iddo Z. Ben-Dov; Hillel Galitzer; Regina Goetz; Makoto Kuro-o; Moosa Mohammadi; Roy Sirkis; Tally Naveh-Many; Justin Silver

Phosphate homeostasis is maintained by a counterbalance between efflux from the kidney and influx from intestine and bone. FGF23 is a bone-derived phosphaturic hormone that acts on the kidney to increase phosphate excretion and suppress biosynthesis of vitamin D. FGF23 signals with highest efficacy through several FGF receptors (FGFRs) bound by the transmembrane protein Klotho as a coreceptor. Since most tissues express FGFR, expression of Klotho determines FGF23 target organs. Here we identify the parathyroid as a target organ for FGF23 in rats. We show that the parathyroid gland expressed Klotho and 2 FGFRs. The administration of recombinant FGF23 led to an increase in parathyroid Klotho levels. In addition, FGF23 activated the MAPK pathway in the parathyroid through ERK1/2 phosphorylation and increased early growth response 1 mRNA levels. Using both rats and in vitro rat parathyroid cultures, we show that FGF23 suppressed both parathyroid hormone (PTH) secretion and PTH gene expression. The FGF23-induced decrease in PTH secretion was prevented by a MAPK inhibitor. These data indicate that FGF23 acts directly on the parathyroid through the MAPK pathway to decrease serum PTH. This bone-parathyroid endocrine axis adds a new dimension to the understanding of mineral homeostasis.


Cell | 1999

Structural Basis for FGF Receptor Dimerization and Activation

Alexander N. Plotnikov; Joseph Schlessinger; Stevan R. Hubbard; Moosa Mohammadi

The crystal structure of FGF2 bound to a naturally occurring variant of FGF receptor 1 (FGFR1) consisting of immunoglobulin-like domains 2 (D2) and 3 (D3) has been determined at 2.8 A resolution. Two FGF2:FGFR1 complexes form a 2-fold symmetric dimer. Within each complex, FGF2 interacts extensively with D2 and D3 as well as with the linker between the two domains. The dimer is stabilized by interactions between FGF2 and D2 of the adjoining complex and by a direct interaction between D2 of each receptor. A positively charged canyon formed by a cluster of exposed basic residues likely represents the heparin-binding site. A general model for FGF- and heparin-induced FGFR dimerization is inferred from the crystal structure, unifying a wealth of biochemical data.


Journal of Biological Chemistry | 2007

Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21

Hiroshi Kurosu; Mihwa Choi; Yasushi Ogawa; Addie S. Dickson; Regina Goetz; Anna V. Eliseenkova; Moosa Mohammadi; Kevin P. Rosenblatt; Steven A. Kliewer; Makoto Kuro-o

The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1–4). We demonstrated that Klotho and βKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires βKlotho. Both FGF19 and FGF21 can signal through FGFR1–3 bound by βKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the βKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of βKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.


Cell | 1991

Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases

Edward Y. Skolnik; B. Margolis; Moosa Mohammadi; E.J. Lowenstein; R Fischer; A. Drepps; Axel Ullrich; Joseph Schlessinger

A novel method has been developed to allow cloning of protein targets for receptors with tyrosine kinase activity. By utilizing the carboxy-terminal tail of EGF receptor (EGFR) as a probe to screen lambda gt11 expression libraries, several EGFR-binding proteins have been cloned; two have been analyzed and contain unique SH2 and SH3 domains. One gene (GRB-1) has been fully sequenced, is expressed in various tissues and cell lines, and has a molecular mass of 85 kd. Interestingly, GRB-1 encodes the human counterpart of the PI3 kinase-associated protein p85. Advantages of this technique include the ease of cloning tyrosine kinase receptor targets present at low levels and the ability to identify proteins that are related in their capacity to bind activated receptors but contain no significant DNA sequence homology. This method, termed CORT (for cloning of receptor targets), offers a general approach for the identification and cloning of various receptor targets.


The EMBO Journal | 1998

Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain.

Moosa Mohammadi; Scott Froum; James Marino Hamby; Mel Conrad Schroeder; Robert L. Panek; Gina H. Lu; Anna V. Eliseenkova; David Green; Joseph Schlessinger; Stevan R. Hubbard

Angiogenesis, the sprouting of new blood vessels from pre‐existing ones, is an essential physiological process in development, yet also plays a major role in the progression of human diseases such as diabetic retinopathy, atherosclerosis and cancer. The effects of the most potent angiogenic factors, vascular endothelial growth factor (VEGF), angiopoietin and fibroblast growth factor (FGF) are mediated through cell surface receptors that possess intrinsic protein tyrosine kinase activity. In this report, we describe a synthetic compound of the pyrido[2,3‐d]pyrimidine class, designated PD 173074, that selectively inhibits the tyrosine kinase activities of the FGF and VEGF receptors. We show that systemic administration of PD 173074 in mice can effectively block angiogenesis induced by either FGF or VEGF with no apparent toxicity. To elucidate the determinants of selectivity, we have determined the crystal structure of PD 173074 in complex with the tyrosine kinase domain of FGF receptor 1 at 2.5 resolution. A high degree of surface complementarity between PD 173074 and the hydrophobic, ATP‐binding pocket of FGF receptor 1 underlies the potency and selectivity of this inhibitor. PD 173074 is thus a promising candidate for a therapeutic angiogenesis inhibitor to be used in the treatment of cancer and other diseases whose progression is dependent upon new blood vessel formation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

βKlotho is required for metabolic activity of fibroblast growth factor 21

Yasushi Ogawa; Hiroshi Kurosu; Masaya Yamamoto; Animesh Nandi; Kevin P. Rosenblatt; Regina Goetz; Anna V. Eliseenkova; Moosa Mohammadi; Makoto Kuro-o

Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine factor that stimulates glucose uptake in adipocytes. Here, we show that FGF21 activity depends on βKlotho, a single-pass transmembrane protein whose expression is induced during differentiation from preadipocytes to adipocytes. βKlotho physically interacts with FGF receptors 1c and 4, thereby increasing the ability of these FGF receptors to bind FGF21 and activate the MAP kinase cascade. Knockdown of βKlotho expression by siRNA in adipocytes diminishes glucose uptake induced by FGF21. Importantly, administration of FGF21 into mice induces MAP kinase phosphorylation in white adipose tissue and not in tissues without βKlotho expression. Thus, βKlotho functions as a cofactor essential for FGF21 activity.


Cell | 2000

Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity.

Alexander N. Plotnikov; Stevan R. Hubbard; Joseph Schlessinger; Moosa Mohammadi

To elucidate the structural determinants governing specificity in fibroblast growth factor (FGF) signaling, we have determined the crystal structures of FGF1 and FGF2 complexed with the ligand binding domains (immunoglobulin-like domains 2 [D2] and 3 [D3]) of FGF receptor 1 (FGFR1) and FGFR2, respectively. Highly conserved FGF-D2 and FGF-linker (between D2-D3) interfaces define a general binding site for all FGF-FGFR complexes. Specificity is achieved through interactions between the N-terminal and central regions of FGFs and two loop regions in D3 that are subject to alternative splicing. These structures provide a molecular basis for FGF1 as a universal FGFR ligand and for modulation of FGF-FGFR specificity through primary sequence variations and alternative splicing.

Collaboration


Dive into the Moosa Mohammadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Linhardt

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge