Morad Bensidhoum
Paris Diderot University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Morad Bensidhoum.
Journal of Gene Medicine | 2003
Alain Chapel; Jean Marc Bertho; Morad Bensidhoum; Loic Fouillard; Randell G. Young; Johanna Frick; Christelle Demarquay; Frédérique Cuvelier; Emilie Mathieu; F. Trompier; Nicolas Dudoignon; Claire Germain; Christelle Mazurier; Jocelyne Aigueperse; Jade Borneman; Norbert Claude Gorin; Patrick Gourmelon; Dominique Thierry
Recent studies have suggested that ex vivo expansion of autologous hematopoietic cells could be a therapy of choice for the treatment of bone marrow failure. We investigated the potential of a combined infusion of autologous ex vivo expanded hematopoietic cells with mesenchymal (MSCs) for the treatment of multi‐organ failure syndrome following irradiation in a non‐human primate model.
Stem Cells | 2006
Sabine Francois; Morad Bensidhoum; Moubarak Mouiseddine; Christelle Mazurier; Bénédicte Allenet; Alexandra Sémont; Johanna Frick; Amandine Saché; Sandrine Bouchet; Dominique Thierry; Patrick Gourmelon; Gorin Nc; Alain Chapel
Mesenchymal stem cells (MSCs) have been shown to migrate to various tissues. There is little information on the fate and potential therapeutic efficacy of the reinfusion of MSCs following total body irradiation (TBI). We addressed this question using human MSC (hMSCs) infused to nonobese diabetic/ severe combined immunodeficient (NOD/SCID) mice submitted to TBI. Further, we tested the impact of additional local irradiation (ALI) superimposed to TBI, as a model of accidental irradiation. NOD/SCID mice were transplanted with hM‐SCs. Group 1 was not irradiated before receiving hMSC infusion. Group 2 received only TBI at a dose of 3.5 Gy, group 3 received local irradiation to the abdomen at a dose of 4.5 Gy in addition to TBI, and group 4 received local irradiation to the leg at 26.5 Gy in addition to TBI. Fifteen days after irradiation, quantitative and spatial distribution of the hMSCs were studied. Histological analysis of mouse tissues confirmed the presence of radio‐induced lesions in the irradiated fields. Following their infusion into nonirradiated animals, hMSCs homed at a very low level to various tissues (lung, bone marrow, and muscles) and no significant engraftment was found in other organs. TBI induced an increase of engraftment levels of hMSCs in the brain, heart, bone marrow, and muscles. Abdominal irradiation (AI) as compared with leg irradiation (LI) increased hMSC engraftment in the exposed area (the gut, liver, and spleen). Hind LI as compared with AI increased hMSC engraftment in the exposed area (skin, quadriceps, and muscles). An increase of hMSC engraftment in organs outside the fields of the ALI was also observed. Conversely, following LI, hMSC engraftment was increased in the brain as compared with AI. This study shows that engraftment of hMSCs in NOD/ SCID mice with significantly increased in response to tissue injuries following TBI with or without ALI. ALI induced an increase of the level of engraftment at sites outside the local irradiation field, thus suggesting a distant (abscopal) effect of radiation damage. This work supports the use of MSCs to repair damaged normal tissues following accidental irradiation and possibly in patients submitted to radiotherapy.
Nature Biotechnology | 2002
Thi My Anh Neildez-Nguyen; Henri Wajcman; Michael C. Marden; Morad Bensidhoum; Vincent Moncollin; Marie-Catherine Giarratana; Ladan Kobari; Dominique Thierry; Luc Douay
New sources of red blood cells (RBCs) would improve the transfusion capacity of blood centers. Our objective was to generate cells for transfusion by inducing a massive proliferation of hematopoietic stem and progenitor cells, followed by terminal erythroid differentiation. We describe here a procedure for amplifying hematopoietic stem cells (HSCs) from human cord blood (CB) by the sequential application of specific combinations of growth factors in a serum-free culture medium. The procedure allowed the ex vivo expansion of CD34+ progenitor and stem cells into a pure erythroid precursor population. When injected into nonobese diabetic, severe combined immunodeficient (NOD/SCID) mice, the erythroid cells were capable of proliferation and terminal differentiation into mature enucleated RBCs. The approach may eventually be useful in clinical transfusion applications.
Orthopedic Clinics of North America | 2010
Véronique Viateau; Morad Bensidhoum; Geneviève Guillemin; Hervé Petite; Didier Hannouche; Fani Anagnostou; Philippe Pélissier
Animal experiments using the induced membrane procedure for bone tissue engineering purposes have provided evidence that the membrane has structural characteristics and biologic properties that may be used for bone tissue engineering purposes. Clinically relevant animal models have demonstrated that standardized particulate bone constructs can be used to repair large bone defects using the procedure and that the osteogenic ability of these constructs partially approaches that of bone autografts.
Stem Cells | 2013
Mickael Deschepper; Mathieu Manassero; Karim Oudina; Joseph Paquet; Laurent‐Emmanuel Monfoulet; Morad Bensidhoum; Delphine Logeart-Avramoglou; Hervé Petite
A major limitation in the development of cellular therapies using human mesenchymal stem cells (hMSCs) is cell survival post‐transplantation. In this study, we challenged the current paradigm of hMSC survival, which assigned a pivotal role to oxygen, by testing the hypothesis that exogenous glucose may be key to hMSC survival. We demonstrated that hMSCs could endure sustained near‐anoxia conditions only in the presence of glucose. In this in vitro cell model, the protein expressions of Hif‐1α and angiogenic factors were upregulated by the presence of glucose. Ectopically implanted tissue constructs supplemented with glucose exhibited four‐ to fivefold higher viability and were more vascularized compared to those without glucose at day 14. These findings provided the first direct in vitro and in vivo demonstration of the proangiogenic and prosurvival functions of glucose in hMSC upon transplantation and identified glucose as an essential component of the ideal scaffold for transplanting stem cells. STEM CELLS2013;31:526–535
Journal of Tissue Engineering and Regenerative Medicine | 2016
Véronique Viateau; Mathieu Manassero; Luc Sensebé; Alain Langonné; David Marchat; Delphine Logeart-Avramoglou; Hervé Petite; Morad Bensidhoum
Tissue‐engineered constructs combining bone marrow mesenchymal stem cells with biodegradable osteoconductive scaffolds are very promising for repairing large segmental bone defects. Synchronizing and controlling the balance between scaffold‐material resorption and new bone tissue formation are crucial aspects for the success of bone tissue engineering. The purpose of the present study was to determine, and compare, the osteogenic potential of ceramic scaffolds with different resorbability. Four clinically relevant granular biomaterial scaffolds (specifically, Porites coral, Acropora coral, beta‐tricalcium phosphate and banked bone) with or without autologous bone marrow stromal cells were implanted in the ectopic, subcutaneous‐pouch sheep model. Scaffold material resorption and new bone formation were assessed eight weeks after implantation. New bone formation was only detected when the biomaterial constructs tested contained MSCs. New bone formation was higher in the Porites coral and Acropora coral than in either the beta‐tricalcium phosphate or the banked bone constructs; furthermore, there was a direct correlation between scaffold resorption and bone formation. The results of the present study provide evidence that, among the biomaterials tested, coral scaffolds containing MSCs promoted the best new bone formation in the present study. Copyright
Bone | 2014
Ali Nassif; Ibtisam Senussi; Fleur Meary; Sophia Loiodice; Dominique Hotton; Benoît Robert; Morad Bensidhoum; Ariane Berdal; Sylvie Babajko
The homeobox gene Msx1 encodes a transcription factor that is highly expressed during embryogenesis and postnatal development in bone. Mutations of the MSX1 gene in humans are associated with cleft palate and (or) tooth agenesis. A similar phenotype is observed in newborn mice invalidated for the Msx1 gene. However, little is known about Msx1 function in osteoblast differentiation and bone mineralization in vivo. In the present study, we aimed to explore the variations of individualized bone shape in a subtle way avoiding the often severe consequences associated with gene mutations. We established transgenic mice that specifically express Msx1 in mineral-matrix-secreting cells under the control of the mouse 2.3kb collagen 1 alpha 1 (Col1α1) promoter, which enabled us to investigate Msx1 function in bone in vivo. Adult transgenic mice (Msx1-Tg) presented altered skull shape and mineralization resulting from increased Msx1 expression during bone development. Serial section analysis of the mandibles showed a high amount of bone matrix in these mice. In addition, osteoblast number, cell proliferation and apoptosis were higher in Msx1-Tg mice than in controls with regional differences that could account for alterations of bone shape. However, Von Kossa staining and μCT analysis showed that bone mineralization was lower in Msx1-Tg mice than in controls due to alteration of osteoblastic differentiation. Msx1 appears to act as a modeling factor for membranous bone; it stimulates trabecular bone metabolism but limits cortical bone growth by promoting apoptosis, and concomitantly controls the collagen-based mineralization process.
Stem Cells | 2017
Adrien Moya; Nathanael Larochette; Joseph Paquet; Mickael Deschepper; Morad Bensidhoum; Valentina Izzo; Guido Kroemer; Hervé Petite; Delphine Logeart-Avramoglou
A major impediment to the development of therapies with mesenchymal stem cells/multipotent stromal cells (MSC) is the poor survival and engraftment of MSCs at the site of injury. We hypothesized that lowering the energetic demand of MSCs by driving them into a quiescent state would enhance their survival under ischemic conditions. Human MSCs (hMSCs) were induced into quiescence by serum deprivation (SD) for 48 hours. Such preconditioned cells (SD‐hMSCs) exhibited reduced nucleotide and protein syntheses compared to unpreconditioned hMSCs. SD‐hMSCs sustained their viability and their ATP levels upon exposure to severe, continuous, near‐anoxia (0.1% O2) and total glucose depletion for up to 14 consecutive days in vitro, as they maintained their hMSC multipotential capabilities upon reperfusion. Most importantly, SD‐hMSCs showed enhanced viability in vivo for the first week postimplantation in mice. Quiescence preconditioning modified the energy‐metabolic profile of hMSCs: it suppressed energy‐sensing mTOR signaling, stimulated autophagy, promoted a shift in bioenergetic metabolism from oxidative phosphorylation to glycolysis and upregulated the expression of gluconeogenic enzymes, such as PEPCK. Since the presence of pyruvate in cell culture media was critical for SD‐hMSC survival under ischemic conditions, we speculate that these cells may utilize some steps of gluconeogenesis to overcome metabolic stress. These findings support that SD preconditioning causes a protective metabolic adaptation that might be taken advantage of to improve hMSC survival in ischemic environments. Stem Cells 2017;35:181–196
Journal of Orthopaedic Research | 2017
Adeline Decambron; Alexandre Fournet; Morad Bensidhoum; Mathieu Manassero; Frédéric Sailhan; Hervé Petite; Delphine Logeart-Avramoglou; Véronique Viateau
Tissue‐engineered constructs (TECs) combining resorbable calcium‐based scaffolds and mesenchymal stem cells (MSCs) have the capability to regenerate large bone defects. Inconsistent results have, however, been observed, with a lack of osteoinductivity as a possible cause of failure. This study aimed to evaluate the impact of the addition of low‐dose bone morphogenetic protein‐2 (BMP‐2) to MSC‐coral‐TECs on the healing of clinically relevant segmental bone defects in sheep. Coral granules were either seeded with autologous MSCs (bone marrow‐derived) or loaded with BMP‐2. A 25‐mm‐long metatarsal bone defect was created and stabilized with a plate in 18 sheep. Defects were filled with one of the following TECs: (i) BMP (n = 5); (ii) MSC (n = 7); or (iii) MSC‐BMP (n = 6). Radiographic follow‐up was performed until animal sacrifice at 4 months. Bone formation and scaffold resorption were assessed by micro‐CT and histological analysis. Bone union with nearly complete scaffold resorption was observed in 1/5, 2/7, and 3/6 animals, when BMP‐, MSC‐, and MSC‐BMP‐TECs were implanted, respectively. The amount of newly formed bone was not statistically different between groups: 1074 mm3 [970–2478 mm3], 1155 mm3 [970–2595 mm3], and 2343 mm3 [931–3276 mm3] for BMP‐, MSC‐, and MSC‐BMP‐TECs, respectively. Increased scaffold resorption rate using BMP‐TECs was the only potential side effect observed. In conclusion, although the dual delivery of MSCs and BMP‐2 onto a coral scaffold further increased bone formation and bone union when compared to single treatment, results were non‐significant. Only 50% of the defects healed, demonstrating the need for further refinement of this strategy before clinical use.
Current Pharmaceutical Biotechnology | 2014
Loic Fouillard; Sabine Francois; Sandrine Bouchet; Morad Bensidhoum; Abdelatif Elm’selmi; Alain Chapel
Bone marrow stroma is damaged by chemotherapy and irradiation protocol. Bone marrow microenvironment supports haematopoiesis and comprises Mesenchymal Stem Cells (MSCs). Coinfusion of MSCs with hematopoietic stem cells (HSC) improves engraftment and accelerates haematopoietic recovery. Stroma-derived factor-1 (SDF-1) is a chemotactic factor which plays a crucial role in stem cell transplantation by enhancing the ability of HSC to engraft. In this study expression of SDF-1 in bone marrow MSCs and the level of Colony Forming Unit Fibroblast (CFU-F) were evaluated in 8 patients with Acute Myeloid leukemia (AML). Evaluation was done at diagnosis and after induction/consolidation chemotherapy before the onset of haematopoietic stem cell transplantation (HSCT). CFU-F frequency increases from diagnosis to remission. Nevertheless level of stromal derived factor-1 (SDF-1) transcripts in bone marrow MSCs of patients with AML stays low. Considering the role of SDF-1 in the homing of HSC, the consequences of SDF-1 deficiency observed in this study might be deleterious on the engraftment after HSCT and haematopoietic recovery. The whole result of this clinical study is an argument for MSC infusion to restore a normal level of SDF1 in the bone marrow microenvironment that could reduce hematopoietic toxicity of chemotherapy and improve HSC engraftment after HSCT.