Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moran Grossman is active.

Publication


Featured researches published by Moran Grossman.


Nature Structural & Molecular Biology | 2011

Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site.

Moran Grossman; Benjamin Born; Matthias Heyden; Dmitry Tworowski; Gregg B. Fields; Irit Sagi; Martina Havenith

Solvent dynamics can play a major role in enzyme activity, but obtaining an accurate, quantitative picture of solvent activity during catalysis is quite challenging. Here, we combine terahertz spectroscopy and X-ray absorption analyses to measure changes in the coupled water-protein motions during peptide hydrolysis by a zinc-dependent human metalloprotease. These changes were tightly correlated with rearrangements at the active site during the formation of productive enzyme-substrate intermediates and were different from those in an enzyme–inhibitor complex. Molecular dynamics simulations showed a steep gradient of fast-to-slow coupled protein-water motions around the protein, active site and substrate. Our results show that water retardation occurs before formation of the functional Michaelis complex. We propose that the observed gradient of coupled protein-water motions may assist enzyme-substrate interactions through water-polarizing mechanisms that are remotely mediated by the catalytic metal ion and the enzyme active site.


Biochemistry | 2010

The Intrinsic Protein Flexibility of Endogenous Protease Inhibitor TIMP-1 Controls Its Binding Interface and Affects Its Function.

Moran Grossman; Dmitry Tworowski; Orly Dym; Meng-Huee Lee; Yaakov Levy; Gillian Murphy; Irit Sagi

Protein flexibility is thought to play key roles in numerous biological processes, including antibody affinity maturation, signal transduction, and enzyme catalysis, yet only limited information is available regarding the molecular details linking protein dynamics with function. A single point mutation at the distal site of the endogenous tissue inhibitor of metalloproteinase 1 (TIMP-1) enables this clinical target protein to tightly bind and inhibit membrane type 1 matrix metalloproteinase (MT1-MMP) by increasing only the association constant. The high-resolution X-ray structure of this complex determined at 2 A could not explain the mechanism of enhanced binding and pointed to a role for protein conformational dynamics. Molecular dynamics (MD) simulations reveal that the high-affinity TIMP-1 mutants exhibit significantly reduced binding interface flexibility and more stable hydrogen bond networks. This was accompanied by a redistribution of the ensemble of substrates to favorable binding conformations that fit the enzyme catalytic site. Apparently, the decrease in backbone flexibility led to a lower entropy cost upon formation of the complex. This work quantifies the effect of a single point mutation on the protein conformational dynamics and function of TIMP-1. Here we argue that controlling the intrinsic protein dynamics of MMP endogenous inhibitors may be utilized for rationalizing the design of selective novel protein inhibitors for this class of enzymes.


Nature Immunology | 2015

The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance

Anna Chuprin; Ayelet Avin; Yael Goldfarb; Yonatan Herzig; Ben Levi; Adi Jacob; Asaf Sela; Shir Katz; Moran Grossman; Clotilde Guyon; Moran Rathaus; Haim Y. Cohen; Irit Sagi; Matthieu Giraud; Michael W. McBurney; Eystein S. Husebye; Jakub Abramson

Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire+ mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.


Journal of Molecular Biology | 2013

Unraveling hidden regulatory sites in structurally homologous metalloproteases

Yael Udi; Marco Fragai; Moran Grossman; Simon Mitternacht; Rina Arad-Yellin; Vito Calderone; Maxime Melikian; Mirco Toccafondi; Igor N. Berezovsky; Claudio Luchinat; Irit Sagi

Monitoring enzymatic activity in vivo of individual homologous enzymes such as the matrix metalloproteinases (MMPs) by antagonist molecules is highly desired for defining physiological and pathophysiological pathways. However, the rational design of antagonists targeting enzyme catalytic moieties specific to one of the homologous enzymes often appears to be an extremely difficult task. This is mainly due to the high structural homology at the enzyme active sites shared by members of the protein family. Accordingly, controlling enzymatic activity via alternative allosteric sites has become an attractive proposition for drug design targeting individual homologous enzymes. Yet, the challenge remains to identify such regulatory alternative sites that are often hidden and scattered over different locations on the proteins surface. We have designed branched amphiphilic molecules exhibiting specific inhibitory activity towards individual members of the MMP family. These amphiphilic isomers share the same chemical nature, providing versatile nonspecific binding reactivity that allows to probe hidden regulatory residues on a given protein surface. Using the advantage provided by amphiphilic ligands, here we explore a new approach for determining hidden regulatory sites. This approach includes diverse experimental analysis, such as structural spectroscopic analyses, NMR, and protein crystallography combined with computational prediction of effector binding sites. We demonstrate how our approach works by analyzing members of the MMP family that possess a unique set of such sites. Our work provides a proof of principle for using ligand effectors to unravel hidden regulatory sites specific to members of the structurally homologous MMP family. This approach may be exploited for the design of novel molecular effectors and therapeutic agents affecting protein catalytic function via interactions with structure-specific regulatory sites.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Enzymatic turnover of macromolecules generates long-lasting protein–water-coupled motions beyond reaction steady state

Jessica Dielmann-Gessner; Moran Grossman; Valeria Conti Nibali; Benjamin Born; Inna Solomonov; Gregg B. Fields; Martina Havenith; Irit Sagi

Significance The solvent in biological reactions plays an active role in protein function; however, correlating solvation dynamics with specific biological scenarios remains a scientific challenge. Here, we followed time-dependent changes in solvation dynamics using terahertz absorption spectroscopy during proteolysis of collagen substrates by a metalloproteinase. Unexpectedly, we revealed that solvation dynamics do not follow the traditional enzymatic steady-state kinetic theory but generate long-lasting protein–water-coupled motions that last longer than a single catalytic cycle and are substrate-specific. These prolonged solvation dynamics contribute to the net enzyme reactivity impacting substrate binding, positional catalysis, and product release. The main focus of enzymology is on the enzyme rates, substrate structures, and reactivity, whereas the role of solvent dynamics in mediating the biological reaction is often left aside owing to its complex molecular behavior. We used integrated X-ray– and terahertz- based time-resolved spectroscopic tools to study protein–water dynamics during proteolysis of collagen-like substrates by a matrix metalloproteinase. We show equilibration of structural kinetic transitions in the millisecond timescale during degradation of the two model substrates collagen and gelatin, which have different supersecondary structure and flexibility. Unexpectedly, the detected changes in collective enzyme–substrate–water-coupled motions persisted well beyond steady state for both substrates while displaying substrate-specific behaviors. Molecular dynamics simulations further showed that a hydration funnel (i.e., a gradient in retardation of hydrogen bond (HB) dynamics toward the active site) is substrate-dependent, exhibiting a steeper gradient for the more complex enzyme–collagen system. The long-lasting changes in protein–water dynamics reflect a collection of local energetic equilibrium states specifically formed during substrate conversion. Thus, the observed long-lasting water dynamics contribute to the net enzyme reactivity, impacting substrate binding, positional catalysis, and product release.


Cancer Research | 2016

Tumor cell invasion can be blocked by modulators of collagen fibril alignment that control assembly of the extracellular matrix

Moran Grossman; Nir Ben-Chetrit; Alina Zhuravlev; Ran Afik; Elad Bassat; Inna Solomonov; Yosef Yarden; Irit Sagi

Abnormal architectures of collagen fibers in the extracellular matrix (ECM) are hallmarks of many invasive diseases, including cancer. Targeting specific stages of collagen assembly in vivo presents a great challenge due to the involvement of various crosslinking enzymes in the multistep, hierarchical process of ECM build-up. Using advanced microscopic tools, we monitored stages of fibrillary collagen assembly in a native fibroblast-derived 3D matrix system and identified anti-lysyl oxidase-like 2 (LOXL2) antibodies that alter the natural alignment and width of endogenic fibrillary collagens without affecting ECM composition. The disrupted collagen morphologies interfered with the adhesion and invasion properties of human breast cancer cells. Treatment of mice bearing breast cancer xenografts with the inhibitory antibodies resulted in disruption of the tumorigenic collagen superstructure and in reduction of primary tumor growth. Our approach could serve as a general methodology to identify novel therapeutics targeting fibrillary protein organization to treat ECM-associated pathologies. Cancer Res; 76(14); 4249-58. ©2016 AACR.


PLOS ONE | 2014

Affinity- and specificity-enhancing mutations are frequent in multispecific interactions between TIMP2 and MMPs.

Oz Sharabi; Jason Shirian; Moran Grossman; Mario Lebendiker; Irit Sagi; Julia M. Shifman

Multispecific proteins play a major role in controlling various functions such as signaling, regulation of transcription/translation, and immune response. Hence, a thorough understanding of the atomic-level principles governing multispecific interactions is important not only for the advancement of basic science but also for applied research such as drug design. Here, we study evolution of an exemplary multispecific protein, a Tissue Inhibitor of Matrix Metalloproteinases 2 (TIMP2) that binds with comparable affinities to more than twenty-six members of the Matrix Metalloproteinase (MMP) and the related ADAMs families. We postulate that due to its multispecific nature, TIMP2 is not optimized to bind to any individual MMP type, but rather embodies a compromise required for interactions with all MMPs. To explore this hypothesis, we perform computational saturation mutagenesis of the TIMP2 binding interface and predict changes in free energy of binding to eight MMP targets. Computational results reveal the non-optimality of the TIMP2 binding interface for all studied proteins, identifying many affinity-enhancing mutations at multiple positions. Several TIMP2 point mutants predicted to enhance binding affinity and/or binding specificity towards MMP14 were selected for experimental verification. Experimental results show high abundance of affinity-enhancing mutations in TIMP2, with some point mutations producing more than ten-fold improvement in affinity to MMP14. Our computational and experimental results collaboratively demonstrate that the TIMP2 sequence lies far from the fitness maximum when interacting with its target enzymes. This non-optimality of the binding interface and high potential for improvement might characterize all proteins evolved for binding to multiple targets.


Journal of Biological Chemistry | 2017

Development of high affinity and high specificity inhibitors of matrix metalloproteinase 14 through computational design and directed evolution

Valeria Arkadash; Gal Yosef; Jason Shirian; Itay Cohen; Yuval Horev; Moran Grossman; Irit Sagi; Evette S. Radisky; Julia M. Shifman; Niv Papo

Degradation of the extracellular matrices in the human body is controlled by matrix metalloproteinases (MMPs), a family of more than 20 homologous enzymes. Imbalance in MMP activity can result in many diseases, such as arthritis, cardiovascular diseases, neurological disorders, fibrosis, and cancers. Thus, MMPs present attractive targets for drug design and have been a focus for inhibitor design for as long as 3 decades. Yet, to date, all MMP inhibitors have failed in clinical trials because of their broad activity against numerous MMP family members and the serious side effects of the proposed treatment. In this study, we integrated a computational method and a yeast surface display technique to obtain highly specific inhibitors of MMP-14 by modifying the natural non-specific broad MMP inhibitor protein N-TIMP2 to interact optimally with MMP-14. We identified an N-TIMP2 mutant, with five mutations in its interface, that has an MMP-14 inhibition constant (Ki) of 0.9 pm, the strongest MMP-14 inhibitor reported so far. Compared with wild-type N-TIMP2, this variant displays ∼900-fold improved affinity toward MMP-14 and up to 16,000-fold greater specificity toward MMP-14 relative to other MMPs. In an in vitro and cell-based model of MMP-dependent breast cancer cellular invasiveness, this N-TIMP2 mutant acted as a functional inhibitor. Thus, our study demonstrates the enormous potential of a combined computational/directed evolution approach to protein engineering. Furthermore, it offers fundamental clues into the molecular basis of MMP regulation by N-TIMP2 and identifies a promising MMP-14 inhibitor as a starting point for the development of protein-based anticancer therapeutics.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2014

Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of membrane type 1 matrix metalloproteinase.

Hideaki Ogata; Elena Decaneto; Moran Grossman; Martina Havenith; Irit Sagi; Wolfgang Lubitz; Markus Knipp

Membrane type 1 matrix metalloproteinase (MT1-MMP) belongs to the large family of zinc-dependent endopeptidases termed MMPs that are located in the extracellular matrix. MT1-MMP was crystallized at 277 K using the vapour-diffusion method with PEG as a precipitating agent. Data sets for MT1-MMP were collected to 2.24 Å resolution at 100 K. The crystals belonged to space group P4(3)2(1)2, with unit-cell parameters a = 62.99, c = 122.60 Å. The crystal contained one molecule per asymmetric unit, with a Matthews coefficient (VM) of 2.90 Å(3) Da(-1); the solvent content is estimated to be 57.6%.


Current Opinion in Structural Biology | 2011

Achieving broad molecular insights into dynamic protein interactions by integrated structural–kinetic approaches

Moran Grossman; Netta Sela-Passwell; Irit Sagi

A network of dynamic protein interactions with their protein partners, substrates, and ligands is known to be crucial for biological function. Revealing molecular and structural-based mechanisms at atomic resolution and in real-time is fundamental for achieving a basic understanding of cellular processes. These technically challenging goals may be achieved by combining time-resolved spectroscopic and structural-kinetic tools, thus providing broad insights into specific molecular events over a wide range of timescales. Here we review representative studies utilizing such an integrated real-time structural approach designed to reveal molecular mechanisms underlying protein interactions at atomic resolution.

Collaboration


Dive into the Moran Grossman's collaboration.

Top Co-Authors

Avatar

Irit Sagi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inna Solomonov

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitry Tworowski

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Jason Shirian

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Julia M. Shifman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Netta Sela-Paswell

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Nir Ben-Chetrit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Orly Dym

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge