Moreno Lelli
University of Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Moreno Lelli.
Journal of the American Chemical Society | 2010
Anne Lesage; Moreno Lelli; David Gajan; Marc A. Caporini; Veronika Vitzthum; Pascal Miéville; Johan Alauzun; Arthur Roussey; Chloé Thieuleux; Ahmad Mehdi; Geoffrey Bodenhausen; Christophe Copéret; Lyndon Emsley
It is shown that surface NMR spectra can be greatly enhanced using dynamic nuclear polarization. Polarization is transferred from the protons of the solvent to the rare nuclei (here carbon-13 at natural isotopic abundance) at the surface, yielding at least a 50-fold signal enhancement for surface species covalently incorporated into a silica framework.
Journal of the American Chemical Society | 2011
Moreno Lelli; David Gajan; Anne Lesage; Marc A. Caporini; Veronika Vitzthum; Pascal Miéville; Florent Héroguel; Fernando Rascón; Arthur Roussey; Chloé Thieuleux; Malika Boualleg; Laurent Veyre; Geoffrey Bodenhausen; Christophe Copéret; Lyndon Emsley
We demonstrate fast characterization of the distribution of surface bonding modes and interactions in a series of functionalized materials via surface-enhanced nuclear magnetic resonance spectroscopy using dynamic nuclear polarization (DNP). Surface-enhanced silicon-29 DNP NMR spectra were obtained by using incipient wetness impregnation of the sample with a solution containing a polarizing radical (TOTAPOL). We identify and compare the bonding topology of functional groups in materials obtained via a sol-gel process and in materials prepared by post-grafting reactions. Furthermore, the remarkable gain in time provided by surface-enhanced silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the facile acquisition of two-dimensional correlation spectra.
Journal of the American Chemical Society | 2012
Alexandre Zagdoun; Gilles Casano; Olivier Ouari; Giuseppe Lapadula; Aaron J. Rossini; Moreno Lelli; Mathieu Baffert; David Gajan; Laurent Veyre; Werner E. Maas; Melanie Rosay; Ralph T. Weber; Chloé Thieuleux; Christophe Copéret; Anne Lesage; Paul Tordo; Lyndon Emsley
A new nitroxide-based biradical having a long electron spin-lattice relaxation time (T(1e)) has been developed as an exogenous polarization source for DNP solid-state NMR experiments. The performance of this new biradical is demonstrated on hybrid silica-based mesostructured materials impregnated with 1,1,2,2-tetrachloroethane radical containing solutions, as well as in frozen bulk solutions, yielding DNP enhancement factors (ε) of over 100 at a magnetic field of 9.4 T and sample temperatures of ~100 K. The effects of radical concentration on the DNP enhancement factors and on the overall sensitivity enhancements (Σ(†)) are reported. The relatively high DNP efficiency of the biradical is attributed to an increased T(1e), which enables more effective saturation of the electron resonance. This new biradical is shown to outperform the polarizing agents used so far in DNP surface-enhanced NMR spectroscopy of materials, yielding a 113-fold increase in overall sensitivity for silicon-29 CPMAS spectra as compared to conventional NMR experiments at room temperature. This results in a reduction in experimental times by a factor >12,700, making the acquisition of (13)C and (15)N one- and two-dimensional NMR spectra at natural isotopic abundance rapid (hours). It has been used here to monitor a series of chemical reactions carried out on the surface functionalities of a hybrid organic-silica material.
Angewandte Chemie | 2012
Aaron J. Rossini; Alexandre Zagdoun; Moreno Lelli; Jérôme Canivet; Sonia Aguado; Olivier Ouari; Paul Tordo; Melanie Rosay; Werner E. Maas; Christophe Copéret; David Farrusseng; Lyndon Emsley; Anne Lesage
Dynamic nuclear polarization (DNP) is applied to enhance the signal of solid-state NMR spectra of metal-organic framework (MOF) materials. The signal enhancement enables the acquisition of high-quality 1D 13C solid-state NMR spectra, 2D 1H-13C dipolar HETCOR and 1D 15N solid-state NMR spectra with natural isotopic abundance in experiment times on the order of minutes.
Journal of the American Chemical Society | 2010
Ivano Bertini; Anusarka Bhaumik; Gaël De Paëpe; Robert G. Griffin; Moreno Lelli; Józef R. Lewandowski; Claudio Luchinat
The use of pseudocontact shifts arising from paramagnetic metal ions in a microcrystalline protein sample is proposed as a strategy to obtain unambiguous signal assignments in solid-state NMR spectra enabling distance extraction for protein structure calculation. With this strategy, 777 unambiguous (281 sequential, 217 medium-range, and 279 long-range) distance restraints could be obtained from PDSD, DARR, CHHC, and the recently introduced PAR and PAIN-CP solid-state experiments for the cobalt(II)-substituted catalytic domain of matrix metalloproteinase 12 (159 amino acids, 17.6 kDa). The obtained structure is a high resolution one, with backbone rmsd of 1.0 +/- 0.2 A, and is in good agreement with the X-ray structure (rmsd to X-ray 1.3 A). The proposed strategy, which may be generalized for nonmetalloproteins with the use of paramagnetic tags, represents a significant step ahead in protein structure determination using solid-state NMR.
Chemical Communications | 2012
Veronika Vitzthum; Pascal Miéville; Diego Carnevale; Marc A. Caporini; David Gajan; Christophe Copéret; Moreno Lelli; Alexandre Zagdoun; Aaron J. Rossini; Anne Lesage; Lyndon Emsley; Geoffrey Bodenhausen
The surface of γ-alumina nanoparticles can be characterized by dynamic nuclear polarization (DNP) surface-enhanced NMR of (27)Al. DNP is combined with cross-polarization and MQ-MAS to determine local symmetries of (27)Al sites at the surface.
Journal of the American Chemical Society | 2010
Ivano Bertini; Lyndon Emsley; Moreno Lelli; Claudio Luchinat; Jiafei Mao; Guido Pintacuda
We show here that by combining tailored approaches based on ultrafast (60 kHz) MAS on the Co(II)-replaced catalytic domain of matrix metalloproteinase 12 (CoMMP-12) we can observe and assign, in a highly paramagnetic protein in the solid state, (13)C and even (1)H resonances from the residues coordinating the metal center. In addition, by exploiting the enhanced relaxation caused by the paramagnetic center, and the low power irradiation enabled by the fast MAS, this can be achieved in remarkably short times and at very high field (21.2 T), with only less than 1 mg of sample. Furthermore, using the known crystal structure of the compound, we are able to distinguish and measure pseudocontact (PCS) contributions to the shifts up to the coordinating ligands and to unveil structural information.
Journal of the American Chemical Society | 2014
Aaron J. Rossini; Cory M. Widdifield; Alexandre Zagdoun; Moreno Lelli; Martin Schwarzwälder; Christophe Copéret; Anne Lesage; Lyndon Emsley
Dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy at 9.4 T is demonstrated for the detailed atomic-level characterization of commercial pharmaceutical formulations. To enable DNP experiments without major modifications of the formulations, the gently ground tablets are impregnated with solutions of biradical polarizing agents. The organic liquid used for impregnation (here 1,1,2,2-tetrachloroethane) is chosen so that the active pharmaceutical ingredient (API) is minimally perturbed. DNP enhancements (ε) of between 40 and 90 at 105 K were obtained for the microparticulate API within four different commercial formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The different formulations contain between 4.8 and 8.7 wt % API. DNP enables the rapid acquisition with natural isotopic abundances of one- and two-dimensional (13)C and (15)N solid-state NMR spectra of the formulations while preserving the microstructure of the API particles. Here this allowed immediate identification of the amorphous form of the API in the tablet. API-excipient interactions were observed in high-sensitivity (1)H-(15)N correlation spectra, revealing direct contacts between povidone and the API. The API domain sizes within the formulations were determined by measuring the variation of ε as a function of the polarization time and numerically modeling nuclear spin diffusion. Here we measure an API particle radius of 0.3 μm with a single particle model, while modeling with a Weibull distribution of particle sizes suggests most particles possess radii of around 0.07 μm.
Chemical Communications | 2012
Alexandre Zagdoun; Aaron J. Rossini; David Gajan; Adrien Bourdolle; Olivier Ouari; Melanie Rosay; Werner E. Maas; Paul Tordo; Moreno Lelli; Lyndon Emsley; Anne Lesage; Christophe Copéret
A series of non-aqueous solvents combined with the exogenous biradical bTbK are developed for DNP NMR that yield enhancements comparable to the best available water based systems. 1,1,2,2-tetrachloroethane appears to be one of the most promising organic solvents for DNP solid-state NMR. Here this results in a reduction in experimental times by a factor of 1000. These new solvents are demonstrated with the first DNP surface enhanced NMR characterization of an organometallic complex supported on a hydrophobic surface.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Stéphane Balayssac; Ivano Bertini; Anusarka Bhaumik; Moreno Lelli; Claudio Luchinat
The recent observation of pseudocontact shifts (pcs) in 13C high-resolution solid-state NMR of paramagnetic proteins opens the way to their application as structural restraints. Here, by investigating a microcrystalline sample of cobalt(II)-substituted matrix metalloproteinase 12 [CoMMP-12 (159 AA, 17.5 kDa)], it is shown that a combined strategy of protein labeling and dilution of the paramagnetic species (i.e., 13C-,15N-labeled CoMMP-12 diluted in unlabeled ZnMMP-12, and 13C-,15N-labeled ZnMMP-12 diluted in unlabeled CoMMP-12) allows one to easily separate the pcs contributions originated from the protein internal metal (intramolecular pcs) from those due to the metals in neighboring proteins in the crystal lattice (intermolecular pcs) and that both can be used for structural purposes. It is demonstrated that intramolecular pcs are significant structural restraints helpful in increasing both precision and accuracy of the structure, which is a need in solid-state structural biology nowadays. Furthermore, intermolecular pcs provide unique information on positions and orientations of neighboring protein molecules in the solid phase.