Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moreno Zolfo is active.

Publication


Featured researches published by Moreno Zolfo.


Nature Methods | 2016

Strain-level microbial epidemiology and population genomics from shotgun metagenomics

Matthias Scholz; Doyle V. Ward; Edoardo Pasolli; Thomas Tolio; Moreno Zolfo; Francesco Asnicar; Duy Tin Truong; Adrian Tett; Ardythe L. Morrow; Nicola Segata

Identifying microbial strains and characterizing their functional potential is essential for pathogen discovery, epidemiology and population genomics. We present pangenome-based phylogenomic analysis (PanPhlAn; http://segatalab.cibio.unitn.it/tools/panphlan), a tool that uses metagenomic data to achieve strain-level microbial profiling resolution. PanPhlAn recognized outbreak strains, produced the largest strain-level population genomic study of human-associated bacteria and, in combination with metatranscriptomics, profiled the transcriptional activity of strains in complex communities.


Cell Reports | 2016

Metagenomic Sequencing with Strain-Level Resolution Implicates Uropathogenic E. coli in Necrotizing Enterocolitis and Mortality in Preterm Infants

Doyle V. Ward; Matthias Scholz; Moreno Zolfo; Diana H. Taft; Kurt Schibler; Adrian Tett; Nicola Segata; Ardythe L. Morrow

SUMMARY Necrotizing enterocolitis (NEC) afflicts approximately 10% of extremely preterm infants with high fatality. Inappropriate bacterial colonization with Enterobacteriaceae is implicated, but no specific pathogen has been identified. We identify uropathogenic E. coli (UPEC) colonization as a significant risk factor for the development of NEC and subsequent mortality. We describe a large-scale deep shotgun metagenomic sequence analysis of the early intestinal microbiome of 144 preterm and 22 term infants. Using a pan-genomic approach to functionally subtype the E. coli, we identify genes associated with NEC and mortality that indicate colonization by UPEC. Metagenomic multilocus sequence typing analysis further defined NEC-associated strains as sequence types often associated with urinary tract infections, including ST69, ST73, ST95, ST127, ST131, and ST144. Although other factors associated with prematurity may also contribute, this report suggests a link between UPEC and NEC and indicates that further attention to these sequence types as potential causal agents is needed.


bioRxiv | 2017

Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling.

Francesco Asnicar; Serena Manara; Moreno Zolfo; Duy Tin Truong; Matthias Scholz; Federica Armanini; Pamela Ferretti; Valentina Gorfer; Anna Pedrotti; Adrian Tett; Nicola Segata

Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se, does not necessarily equate to vertical transmission, as species exhibit considerable strain heterogeneity. It is therefore imperative to assess whether shared microbes belong to the same genetic variant (i.e., strain) to support the hypothesis of vertical transmission. Here we demonstrate the potential of shotgun metagenomics and strain-level profiling to identify vertical transmission events. Combining these data with metatranscriptomics, we show that it is possible not only to identify and track the fate of microbes in the early infant microbiome but also to investigate the actively transcribing members of the community. These approaches will ultimately provide important insights into the acquisition, development, and community dynamics of the infant microbiome. ABSTRACT The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum, Coprococcus comes, and Ruminococcus bromii, were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se, does not necessarily equate to vertical transmission, as species exhibit considerable strain heterogeneity. It is therefore imperative to assess whether shared microbes belong to the same genetic variant (i.e., strain) to support the hypothesis of vertical transmission. Here we demonstrate the potential of shotgun metagenomics and strain-level profiling to identify vertical transmission events. Combining these data with metatranscriptomics, we show that it is possible not only to identify and track the fate of microbes in the early infant microbiome but also to investigate the actively transcribing members of the community. These approaches will ultimately provide important insights into the acquisition, development, and community dynamics of the infant microbiome.


Mbio | 2017

Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission

Sabrina Duranti; Gabriele Andrea Lugli; Leonardo Mancabelli; Federica Armanini; Francesca Turroni; Kieran James; Pamela Ferretti; Valentina Gorfer; Chiara Ferrario; Christian Milani; Marta Mangifesta; Rosaria Anzalone; Moreno Zolfo; Alice Viappiani; Edoardo Pasolli; Ilaria Bariletti; Rosarita Canto; Rosanna Clementi; Marina Cologna; Tiziana Crifò; Giuseppina Cusumano; Sabina Fedi; Stefania Gottardi; Claudia Innamorati; Caterina Masè; Daniela Postai; Daniela Savoi; Massimo Soffiati; Saverio Tateo; Anna Pedrotti

BackgroundThe correct establishment of the human gut microbiota represents a crucial development that commences at birth. Different hypotheses propose that the infant gut microbiota is derived from, among other sources, the mother’s fecal/vaginal microbiota and human milk.ResultsThe composition of bifidobacterial communities of 25 mother-infant pairs was investigated based on an internal transcribed spacer (ITS) approach, combined with cultivation-mediated and genomic analyses. We identified bifidobacterial strains/communities that are shared between mothers and their corresponding newborns. Notably, genomic analyses together with growth profiling assays revealed that bifidobacterial strains that had been isolated from human milk are genetically adapted to utilize human milk glycans. In addition, we identified particular bacteriophages specific of bifidobacterial species that are common in the viromes of mother and corresponding child.ConclusionsThis study highlights the transmission of bifidobacterial communities from the mother to her child and implies human milk as a potential vehicle to facilitate this acquisition. Furthermore, these data represent the first example of maternal inheritance of bifidobacterial phages, also known as bifidophages in infants following a vertical transmission route.


Nucleic Acids Research | 2017

MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples

Moreno Zolfo; Adrian Tett; Olivier Jousson; Claudio Donati; Nicola Segata

Metagenomic characterization of microbial communities has the potential to become a tool to identify pathogens in human samples. However, software tools able to extract strain-level typing information from metagenomic data are needed. Low-throughput molecular typing schema such as Multilocus Sequence Typing (MLST) are still widely used and provide a wealth of strain-level information that is currently not exploited by metagenomic methods. We introduce MetaMLST, a software tool that reconstructs the MLST loci of microorganisms present in microbial communities from metagenomic data. Tested on synthetic and spiked-in real metagenomes, the pipeline was able to reconstruct the MLST sequences with >98.5% accuracy at coverages as low as 1×. On real samples, the pipeline showed higher sensitivity than assembly-based approaches and it proved successful in identifying strains in epidemic outbreaks as well as in intestinal, skin and gastrointestinal microbiome samples.


npj Biofilms and Microbiomes | 2017

Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis

Adrian Tett; Edoardo Pasolli; Stefania Farina; Duy Tin Truong; Francesco Asnicar; Moreno Zolfo; Francesco Beghini; Federica Armanini; Olivier Jousson; Veronica De Sanctis; Roberto Bertorelli; Giampiero Girolomoni; Mario Cristofolini; Nicola Segata

Psoriasis is an immune-mediated inflammatory skin disease that has been associated with cutaneous microbial dysbiosis by culture-dependent investigations and rRNA community profiling. We applied, for the first time, high-resolution shotgun metagenomics to characterise the microbiome of psoriatic and unaffected skin from 28 individuals. We demonstrate psoriatic ear sites have a decreased diversity and psoriasis is associated with an increase in Staphylococcus, but overall the microbiomes of psoriatic and unaffected sites display few discriminative features at the species level. Finer strain-level analysis reveals strain heterogeneity colonisation and functional variability providing the intriguing hypothesis of psoriatic niche-specific strain adaptation or selection. Furthermore, we accessed the poorly characterised, but abundant, clades with limited sequence information in public databases, including uncharacterised Malassezia spp. These results highlight the skins hidden diversity and suggests strain-level variations could be key determinants of the psoriatic microbiome. This illustrates the need for high-resolution analyses, particularly when identifying therapeutic targets. This work provides a baseline for microbiome studies in relation to the pathogenesis of psoriasis.Psoriasis: investigating microbial diversityAnalysing microbial populations on the skin provides an insight into the diversity of microbes associated with psoriasis. Nicola Segata and colleagues at the University of Trento, Italy, used genetic analysis to compare the microbial populations on regions of skin affected and unaffected by psoriasis. Staphylococcus bacteria were more prevalent in psoriasis, but there was little clearly defined difference in microbial species on psoriasis-affected and unaffected skin. There was, however, decreased microbial diversity on psoriatic ear sites. Deeper strain-level computational analysis suggested that psoriasis could offer niche locations for colonisation by specific strains of staphylococci and propionibacteria. The results highlight the diversity of microbial populations on the skin, and the need for larger cohorts to build on the baseline data now established. Further studies might help identify targets for treating skin bacteria associated with psoriasis.


Nature microbiology | 2016

Uncovering oral Neisseria tropism and persistence using metagenomic sequencing

Claudio Donati; Moreno Zolfo; Davide Albanese; Duy Tin Truong; Francesco Asnicar; Valerio Iebba; Duccio Cavalieri; Olivier Jousson; Carlotta De Filippo; Curtis Huttenhower; Nicola Segata

Microbial epidemiology and population genomics have previously been carried out near-exclusively for organisms grown in vitro. Metagenomics helps to overcome this limitation, but it is still challenging to achieve strain-level characterization of microorganisms from culture-independent data with sufficient resolution for epidemiological modelling. Here, we have developed multiple complementary approaches that can be combined to profile and track individual microbial strains. To specifically profile highly recombinant neisseriae from oral metagenomes, we integrated four metagenomic analysis techniques: single nucleotide polymorphisms in the clades core genome, DNA uptake sequence signatures, metagenomic multilocus sequence typing and strain-specific marker genes. We applied these tools to 520 oral metagenomes from the Human Microbiome Project, finding evidence of site tropism and temporal intra-subject strain retention. Although the opportunistic pathogen Neisseria meningitidis is enriched for colonization in the throat, N. flavescens and N. subflava populate the tongue dorsum, and N. sicca, N. mucosa and N. elongata the gingival plaque. The buccal mucosa appeared as an intermediate ecological niche between the plaque and the tongue. The resulting approaches to metagenomic strain profiling are generalizable and can be extended to other organisms and microbiomes across environments.


Cell Host & Microbe | 2018

Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome

Pamela Ferretti; Edoardo Pasolli; Adrian Tett; Francesco Asnicar; Valentina Gorfer; Sabina Fedi; Federica Armanini; Duy Tin Truong; Serena Manara; Moreno Zolfo; Francesco Beghini; Roberto Bertorelli; Veronica De Sanctis; Ilaria Bariletti; Rosarita Canto; Rosanna Clementi; Marina Cologna; Tiziana Crifò; Giuseppina Cusumano; Stefania Gottardi; Claudia Innamorati; Caterina Masè; Daniela Postai; Daniela Savoi; Sabrina Duranti; Gabriele Andrea Lugli; Leonardo Mancabelli; Francesca Turroni; Chiara Ferrario; Christian Milani

Summary The acquisition and development of the infant microbiome are key to establishing a healthy host-microbiome symbiosis. The maternal microbial reservoir is thought to play a crucial role in this process. However, the source and transmission routes of the infant pioneering microbes are poorly understood. To address this, we longitudinally sampled the microbiome of 25 mother-infant pairs across multiple body sites from birth up to 4 months postpartum. Strain-level metagenomic profiling showed a rapid influx of microbes at birth followed by strong selection during the first few days of life. Maternal skin and vaginal strains colonize only transiently, and the infant continues to acquire microbes from distinct maternal sources after birth. Maternal gut strains proved more persistent in the infant gut and ecologically better adapted than those acquired from other sources. Together, these data describe the mother-to-infant microbiome transmission routes that are integral in the development of the infant microbiome.


Genome Announcements | 2017

Draft genome sequence of the planktic cyanobacterium Tychonema bourrellyi, isolated from Alpine lentic freshwater

Federica Pinto; Adrian Tett; Federica Armanini; Francesco Asnicar; Adriano Boscaini; Edoardo Pasolli; Moreno Zolfo; Claudio Donati; Nicola Segata

ABSTRACT We describe here the draft genome sequence of the cyanobacterium Tychonema bourrellyi, assembled from a metagenome of a nonaxenic culture. The strain (FEM_GT703) was isolated from a freshwater sample taken from Lake Garda, Italy. The draft genome sequence represents the first assembled T. bourrellyi strain.


Genome Announcements | 2018

Draft Genome Sequences of Novel Pseudomonas, Flavobacterium, and Sediminibacterium Species Strains from a Freshwater Ecosystem

Federica Pinto; Adrian Tett; Federica Armanini; Francesco Asnicar; Adriano Boscaini; Edoardo Pasolli; Moreno Zolfo; Claudio Donati; Nicola Segata

ABSTRACT Freshwater ecosystems represent 0.01% of the water on Earth, but they support 6% of global biodiversity that is still mostly uncharacterized. Here, we describe the genome sequences of three strains belonging to novel species in the Pseudomonas, Flavobacterium, and Sediminibacterium genera recovered from a water sample of Lake Garda, Italy.

Collaboration


Dive into the Moreno Zolfo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge