Morgan Beeby
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Morgan Beeby.
PLOS Biology | 2005
Morgan Beeby; Brian D. O'Connor; Carsten Ryttersgaard; Daniel R. Boutz; L. Jeanne Perry; Todd O. Yeates
Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms.
The EMBO Journal | 2011
Songye Chen; Morgan Beeby; Gavin E. Murphy; Jared R. Leadbetter; David R. Hendrixson; Ariane Briegel; Zhuo Li; Jian Shi; Elitza I. Tocheva; Axel Müller; Megan J. Dobro; Grant J. Jensen
The bacterial flagellum is one of natures most amazing and well‐studied nanomachines. Its cell‐wall‐anchored motor uses chemical energy to rotate a microns‐long filament and propel the bacterium towards nutrients and away from toxins. While much is known about flagellar motors from certain model organisms, their diversity across the bacterial kingdom is less well characterized, allowing the occasional misrepresentation of the motor as an invariant, ideal machine. Here, we present an electron cryotomographical survey of flagellar motor architectures throughout the Bacteria. While a conserved structural core was observed in all 11 bacteria imaged, surprisingly novel and divergent structures as well as different symmetries were observed surrounding the core. Correlating the motor structures with the presence and absence of particular motor genes in each organism suggested the locations of five proteins involved in the export apparatus including FliI, whose position below the C‐ring was confirmed by imaging a deletion strain. The combination of conserved and specially‐adapted structures seen here sheds light on how this complex protein nanomachine has evolved to meet the needs of different species.
Seminars in Cell & Developmental Biology | 2015
Bonnie Chaban; Hughes Hv; Morgan Beeby
The bacterial flagellum is an amazingly complex molecular machine with a diversity of roles in pathogenesis including reaching the optimal host site, colonization or invasion, maintenance at the infection site, and post-infection dispersal. Multi-megadalton flagellar motors self-assemble across the cell wall to form a reversible rotary motor that spins a helical propeller - the flagellum itself - to drive the motility of diverse bacterial pathogens. The flagellar motor responds to the chemoreceptor system to redirect swimming toward beneficial environments, thus enabling flagellated pathogens to seek out their site of infection. At their target site, additional roles of surface swimming and mechanosensing are mediated by flagella to trigger pathogenesis. Yet while these motility-related functions have long been recognized as virulence factors in bacteria, many bacteria have capitalized upon flagellar structure and function by adapting it to roles in other stages of the infection process. Once at their target site, the flagellum can assist adherence to surfaces, differentiation into biofilms, secretion of effector molecules, further penetration through tissue structures, or in activating phagocytosis to gain entry into eukaryotic cells. Next, upon onset of infection, flagellar expression must be adapted to deal with the hosts immune system defenses, either by reduced or altered expression or by flagellar structural modification. Finally, after a successful growth phase on or inside a host, dispersal to new infection sites is often flagellar motility-mediated. Examining examples of all these processes from different bacterial pathogens, it quickly becomes clear that the flagellum is involved in bacterial pathogenesis for motility and a whole lot more.
Molecular Microbiology | 2013
Morgan Beeby; James C. Gumbart; Benoît Roux; Grant J. Jensen
The bacterial cell wall is a mesh polymer of peptidoglycan – linear glycan strands cross‐linked by flexible peptides – that determines cell shape and provides physical protection. While the glycan strands in thin ‘Gram‐negative’ peptidoglycan are known to run circumferentially around the cell, the architecture of the thicker ‘Gram‐positive’ form remains unclear. Using electron cryotomography, here we show that Bacillus subtilis peptidoglycan is a uniformly dense layer with a textured surface. We further show it rips circumferentially, curls and thickens at free edges, and extends longitudinally when denatured. Molecular dynamics simulations show that only atomic models based on the circumferential topology recapitulate the observed curling and thickening, in support of an ‘inside‐to‐outside’ assembly process. We conclude that instead of being perpendicular to the cell surface or wrapped in coiled cables (two alternative models), the glycan strands in Gram‐positive cell walls run circumferentially around the cell just as they do in Gram‐negative cells. Together with providing insights into the architecture of the ultimate determinant of cell shape, this study is important because Gram‐positive peptidoglycan is an antibiotic target crucial to the viability of several important rod‐shaped pathogens including Bacillus anthracis, Listeria monocytogenes, and Clostridium difficile.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Morgan Beeby; Deborah A. Ribardo; Caitlin A. Brennan; Edward G. Ruby; Grant J. Jensen; David R. Hendrixson
Significance Many bacteria swim using helical propellers, flagella. Intriguingly, different bacteria show different swimming abilities, strikingly illustrated by the abilities of some to bore through viscous fluids (e.g., gastrointestinal mucus) in which others are completely immobilized. We used 3D electron microscopy to show that differences can be explained by the structures of the torque-generating motors: two diverse high-torque motors position additional torque-generating complexes at wider radii from the axial driveshaft than in the model enteric bacteria; this positioning is consistent with the exertion of greater leverage to rotate the flagellum and thus greater torque generation. Intriguingly, these torque-generating complexes are scaffolded at wider radii by a conserved but divergent family of structures, suggesting an ancient origin of reconfiguring torque output. Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.
Molecular Microbiology | 2011
Ariane Briegel; Morgan Beeby; Martin Thanbichler; Grant J. Jensen
Bacterial chemoreceptors cluster into exquisitively sensitive, tunable, highly ordered, polar arrays. While these arrays serve as paradigms of cell signalling in general, it remains unclear what conformational changes transduce signals from the periplasmic tips, where attractants and repellents bind, to the cytoplasmic signalling domains. Conflicting reports support and contest the hypothesis that activation causes large changes in the packing arrangement of the arrays, up to and including their complete disassembly. Using electron cryotomography, here we show that in Caulobacter crescentus, chemoreceptor arrays in cells grown in different media and immediately after exposure to the attractant galactose all exhibit the same 12 nm hexagonal packing arrangement, array size and other structural parameters. ΔcheB and ΔcheR mutants mimicking attractant‐ or repellent‐bound states prior to adaptation also show the same lattice structure. We conclude that signal transduction and amplification must be accomplished through only small, nanoscale conformational changes.
PLOS Computational Biology | 2014
James C. Gumbart; Morgan Beeby; Grant J. Jensen; Benoı̂t Roux
Bacteria face the challenging requirement to maintain their shape and avoid rupture due to the high internal turgor pressure, but simultaneously permit the import and export of nutrients, chemical signals, and virulence factors. The bacterial cell wall, a mesh-like structure composed of cross-linked strands of peptidoglycan, fulfills both needs by being semi-rigid, yet sufficiently porous to allow diffusion through it. How the mechanical properties of the cell wall are determined by the molecular features and the spatial arrangement of the relatively thin strands in the larger cellular-scale structure is not known. To examine this issue, we have developed and simulated atomic-scale models of Escherichia coli cell walls in a disordered circumferential arrangement. The cell-wall models are found to possess an anisotropic elasticity, as known experimentally, arising from the orthogonal orientation of the glycan strands and of the peptide cross-links. Other features such as thickness, pore size, and disorder are also found to generally agree with experiments, further supporting the disordered circumferential model of peptidoglycan. The validated constructs illustrate how mesoscopic structure and behavior emerge naturally from the underlying atomic-scale properties and, furthermore, demonstrate the ability of all-atom simulations to reproduce a range of macroscopic observables for extended polymer meshes.
Protein Science | 2008
Morgan Beeby; Thomas A. Bobik; Todd O. Yeates
Bacterial microcompartments are supramolecular protein assemblies that function as bacterial organelles by compartmentalizing particular enzymes and metabolic intermediates. The outer shells of these microcompartments are assembled from multiple paralogous structural proteins. Because the paralogs are required to assemble together, their genes are often transcribed together from the same operon, giving rise to a distinctive genomic pattern: multiple, typically small, paralogous proteins encoded in close proximity on the bacterial chromosome. To investigate the generality of this pattern in supramolecular assemblies, we employed a comparative genomics approach to search for protein families that show the same kind of genomic pattern as that exhibited by bacterial microcompartments. The results indicate that a variety of large supramolecular assemblies fit the pattern, including bacterial gas vesicles, bacterial pili, and small heat‐shock protein complexes. The search also retrieved several widely distributed protein families of presently unknown function. The proteins from one of these families were characterized experimentally and found to show a behavior indicative of supramolecular assembly. We conclude that cotranscribed paralogs are a common feature of diverse supramolecular assemblies, and a useful genomic signature for discovering new kinds of large protein assemblies from genomic data.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Lam T. Nguyen; James C. Gumbart; Morgan Beeby; Grant J. Jensen
Significance The rod shape of walled bacteria is determined by the peptidoglycan (PG) sacculus, but how rod shape is maintained as cells grow remains a fundamental question in bacterial cell biology. We have developed a coarse-grained modeling method to study rod shape maintenance. Individual PG remodeling enzymes, including transglycosylases, transpeptidases, and endopeptidases, are for the first time, to our knowledge, explicitly modeled to explore how they can coordinate to remodel a sacculus several orders of magnitude larger than the enzymes themselves. Rather than requiring top-down regulation of new PG insertion sites, our work shows that local coordination of the PG remodeling enzymes within discrete complexes can be sufficient to maintain the integrity and rod shape of the sacculus. Bacteria are surrounded by a peptidoglycan (PG) cell wall that must be remodeled to allow cell growth. While many structural details and properties of PG and the individual enzymes involved are known, how the process is coordinated to maintain cell integrity and rod shape is not understood. We have developed a coarse-grained method to simulate how individual transglycosylases, transpeptidases, and endopeptidases could introduce new material into an existing unilayer PG network. We find that a simple model with no enzyme coordination fails to maintain cell wall integrity and rod shape. We then iteratively analyze failure modes and explore different mechanistic hypotheses about how each problem might be overcome by the macromolecules involved. In contrast to a current theory, which posits that long MreB filaments are needed to coordinate PG insertion sites, we find that local coordination of enzyme activities in individual complexes can be sufficient to maintain cell integrity and rod shape. We also present possible molecular explanations for the existence of monofunctional transpeptidases and glycosidases (glycoside hydrolases), trimeric peptide crosslinks, cell twisting during growth, and synthesis of new strands in pairs.
The EMBO Journal | 2017
Qing Yao; Andrew I. Jewett; Yi-Wei Chang; Catherine M. Oikonomou; Morgan Beeby; Cristina V. Iancu; Ariane Briegel; Debnath Ghosal; Grant J. Jensen
FtsZ, the bacterial homologue of eukaryotic tubulin, plays a central role in cell division in nearly all bacteria and many archaea. It forms filaments under the cytoplasmic membrane at the division site where, together with other proteins it recruits, it drives peptidoglycan synthesis and constricts the cell. Despite extensive study, the arrangement of FtsZ filaments and their role in division continue to be debated. Here, we apply electron cryotomography to image the native structure of intact dividing cells and show that constriction in a variety of Gram‐negative bacterial cells, including Proteus mirabilis and Caulobacter crescentus, initiates asymmetrically, accompanied by asymmetric peptidoglycan incorporation and short FtsZ‐like filament formation. These results show that a complete ring of FtsZ is not required for constriction and lead us to propose a model for FtsZ‐driven division in which short dynamic FtsZ filaments can drive initial peptidoglycan synthesis and envelope constriction at the onset of cytokinesis, later increasing in length and number to encircle the division plane and complete constriction.