Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morgan E. Levine is active.

Publication


Featured researches published by Morgan E. Levine.


Cell Metabolism | 2014

Low Protein Intake Is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older Population

Morgan E. Levine; Jorge A. Suarez; Sebastian Brandhorst; Priya Balasubramanian; Chia-Wei Cheng; Federica Madia; Luigi Fontana; Mario G. Mirisola; Jaime Guevara-Aguirre; Junxiang Wan; Giuseppe Passarino; Brian K. Kennedy; Min Wei; Pinchas Cohen; Eileen M. Crimmins; Valter D. Longo

Mice and humans with growth hormone receptor/IGF-1 deficiencies display major reductions in age-related diseases. Because protein restriction reduces GHR-IGF-1 activity, we examined links between protein intake and mortality. Respondents aged 50-65 reporting high protein intake had a 75% increase in overall mortality and a 4-fold increase in cancer death risk during the following 18 years. These associations were either abolished or attenuated if the proteins were plant derived. Conversely, high protein intake was associated with reduced cancer and overall mortality in respondents over 65, but a 5-fold increase in diabetes mortality across all ages. Mouse studies confirmed the effect of high protein intake and GHR-IGF-1 signaling on the incidence and progression of breast and melanoma tumors, but also the detrimental effects of a low protein diet in the very old. These results suggest that low protein intake during middle age followed by moderate to high protein consumption in old adults may optimize healthspan and longevity.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Quantification of biological aging in young adults

Daniel W. Belsky; Avshalom Caspi; Renate Houts; Harvey J. Cohen; David L. Corcoran; Andrea Danese; HonaLee Harrington; Salomon Israel; Morgan E. Levine; Jonathan D. Schaefer; Karen Sugden; Ben Williams; Anatoli I. Yashin; Richie Poulton; Terrie E. Moffitt

Significance The global population is aging, driving up age-related disease morbidity. Antiaging interventions are needed to reduce the burden of disease and protect population productivity. Young people are the most attractive targets for therapies to extend healthspan (because it is still possible to prevent disease in the young). However, there is skepticism about whether aging processes can be detected in young adults who do not yet have chronic diseases. Our findings indicate that aging processes can be quantified in people still young enough for prevention of age-related disease, opening a new door for antiaging therapies. The science of healthspan extension may be focused on the wrong end of the lifespan; rather than only studying old humans, geroscience should also study the young. Antiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their “biological aging” (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies.


Aging (Albany NY) , 8 (9) pp. 1844-1865. (2016) | 2016

DNA methylation-based measures of biological age: meta-analysis predicting time to death.

Brian H. Chen; Riccardo E. Marioni; Elena Colicino; Marjolein J. Peters; Cavin K. Ward-Caviness; Pei-Chien Tsai; Nicholas S. Roetker; Allan C. Just; Ellen W. Demerath; Weihua Guan; Jan Bressler; Myriam Fornage; Stephanie A. Studenski; Amy Vandiver; Ann Zenobia Moore; Toshiko Tanaka; Douglas P. Kiel; Liming Liang; Pantel S. Vokonas; Joel Schwartz; Kathryn L. Lunetta; Joanne M. Murabito; Stefania Bandinelli; Dena Hernandez; David Melzer; Michael A. Nalls; Luke C. Pilling; Timothy R. Price; Andrew Singleton; Christian Gieger

Estimates of biological age based on DNA methylation patterns, often referred to as “epigenetic age”, “DNAm age”, have been shown to be robust biomarkers of age in humans. We previously demonstrated that independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089 individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All considered measures of epigenetic age acceleration were predictive of mortality (p≤8.2×10−9), independent of chronological age, even after adjusting for additional risk factors (p<5.4×10−4), and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5×10−43). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2013

Modeling the Rate of Senescence: Can Estimated Biological Age Predict Mortality More Accurately Than Chronological Age?

Morgan E. Levine

Biological age (BA) is useful for examining differences in aging rates. Nevertheless, little consensus exists regarding optimal methods for calculating BA. The aim of this study is to compare the predictive ability of five BA algorithms. The sample included 9,389 persons, aged 30-75 years, from National Health and Nutrition Examination Survey III. During the 18-year follow-up, 1,843 deaths were counted. Each BA algorithm was compared with chronological age on the basis of predictive sensitivity and strength of association with mortality. Results found that the Klemera and Doubal method was the most reliable predictor of mortality and performed significantly better than chronological age. Furthermore, when included with chronological age in a model, Klemera and Doubal method had more robust predictive ability and caused chronological age to no longer be significantly associated with mortality. Given the potential of BA to highlight heterogeneity, the Klemera and Doubal method algorithm may be useful for studying a number of questions regarding the biology of aging.


Genome Biology | 2016

An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease.

Steve Horvath; Michael Gurven; Morgan E. Levine; Benjamin C. Trumble; Hillard Kaplan; Hooman Allayee; Beate Ritz; Brian H. Chen; Ake T. Lu; Tammy Rickabaugh; Beth D. Jamieson; Dianjianyi Sun; Shengxu Li; Wei Chen; Lluis Quintana-Murci; Maud Fagny; Michael S. Kobor; Philip S. Tsao; Alex P. Reiner; Kerstin L. Edlefsen; Devin Absher; Themistocles L. Assimes

BackgroundEpigenetic biomarkers of aging (the “epigenetic clock”) have the potential to address puzzling findings surrounding mortality rates and incidence of cardio-metabolic disease such as: (1) women consistently exhibiting lower mortality than men despite having higher levels of morbidity; (2) racial/ethnic groups having different mortality rates even after adjusting for socioeconomic differences; (3) the black/white mortality cross-over effect in late adulthood; and (4) Hispanics in the United States having a longer life expectancy than Caucasians despite having a higher burden of traditional cardio-metabolic risk factors.ResultsWe analyzed blood, saliva, and brain samples from seven different racial/ethnic groups. We assessed the intrinsic epigenetic age acceleration of blood (independent of blood cell counts) and the extrinsic epigenetic aging rates of blood (dependent on blood cell counts and tracks the age of the immune system). In blood, Hispanics and Tsimane Amerindians have lower intrinsic but higher extrinsic epigenetic aging rates than Caucasians. African-Americans have lower extrinsic epigenetic aging rates than Caucasians and Hispanics but no differences were found for the intrinsic measure. Men have higher epigenetic aging rates than women in blood, saliva, and brain tissue.ConclusionsEpigenetic aging rates are significantly associated with sex, race/ethnicity, and to a lesser extent with CHD risk factors, but not with incident CHD outcomes. These results may help elucidate lower than expected mortality rates observed in Hispanics, older African-Americans, and women.


Obesity | 2012

The Impact of Insulin Resistance and Inflammation on the Association Between Sarcopenic Obesity and Physical Functioning

Morgan E. Levine; Eileen M. Crimmins

Age associated increases in visceral adiposity and decreases in muscle mass (sarcopenia) have been shown to contribute to disability in late life. Furthermore, there is evidence that obesity‐related physiological states, such as insulin resistance and systemic inflammation, may exacerbate physical functioning problems. Both conditions have been shown to prompt hypercatabolism and impair the anabolic effect of muscles, ultimately stimulating protein breakdown and suppressing muscle synthesis. This cross‐sectional study investigates whether insulin resistance and inflammation partially account for the associations between decreased physical functioning and sarcopenic obesity. Subjects include 2,287 males and females aged 60 and older without diagnosed diabetes from the National Health and Nutrition Examination Survey (NHANES 1999–2004). Body composition measurements indicating waist circumference and appendicular skeletal muscle mass, measured by dual‐energy X‐ray absorptiometry (DXA), were used to construct four body composition categories—healthy, sarcopenic nonobese, nonsarcopenic obese, and sarcopenic obese. Physical functioning was measured using self‐reports of difficulty performing six activities. The homeostasis model assessment (IRHOMA) was used to measure insulin resistance, while inflammatory state was assessed through measurement of serum C‐reactive protein (CRP). Modified Poisson regression models were used to examine the association between physical functioning and body composition, and to evaluate whether differences in insulin resistance or inflammation partially explained this relationship. In the analysis, we controlled for possible confounders such as age, education, sex, height, and race/ethnicity. Findings suggest that physical functioning problems are increased in those with sarcopenic obesity, sarcopenic nonobesity and nonsarcopenic obesity. Furthermore, these associations may be influenced by differences in insulin resistance among different body composition phenotypes.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Menopause accelerates biological aging

Morgan E. Levine; Ake T. Lu; Brian H. Chen; Dena Hernandez; Andrew Singleton; Luigi Ferrucci; Stefania Bandinelli; Elias Salfati; JoAnn E. Manson; Austin Quach; Cynthia Kusters; Diana Kuh; Andrew Wong; Andrew E. Teschendorff; Martin Widschwendter; Beate Ritz; Devin Absher; Themistocles L. Assimes; Steve Horvath

Significance Within an evolutionary framework, aging and reproduction are intrinsically linked. Although both laboratory and epidemiological studies have observed associations between the timing of reproductive senescence and longevity, it is not yet known whether differences in the age of menopause are reflected in biomarkers of aging. Using our recently developed biomarker of aging, the “epigenetic clock,” we examined whether age at menopause is associated with epigenetic age of blood, saliva, and buccal epithelium. This is a definitive study that shows an association between age of menopause and biological aging (measured using the epigenetic clock). Our results also indicate menopause may accelerate the epigenetic aging process in blood and that age at menopause and epigenetic age acceleration share a common genetic signature. Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Womens Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinsons disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further.


Aging | 2017

Epigenetic clock analysis of diet, exercise, education, and lifestyle factors

Austin Quach; Morgan E. Levine; Toshiko Tanaka; Ake T. Lu; Brian H. Chen; Luigi Ferrucci; Beate Ritz; Stefania Bandinelli; Marian L. Neuhouser; Jeannette M. Beasley; Linda Snetselaar; Robert B. Wallace; Philip S. Tsao; Devin Absher; Themistocles L. Assimes; James D. Stewart; Yun Li; Lifang Hou; Andrea Baccarelli; Eric A. Whitsel; Steve Horvath

Behavioral and lifestyle factors have been shown to relate to a number of health-related outcomes, yet there is a need for studies that examine their relationship to molecular aging rates. Toward this end, we use recent epigenetic biomarkers of age that have previously been shown to predict all-cause mortality, chronic conditions and age-related functional decline. We analyze cross-sectional data from 4,173 postmenopausal female participants from the Womens Health Initiative, as well as 402 male and female participants from the Italian cohort study, Invecchiare nel Chianti. Extrinsic epigenetic age acceleration (EEAA) exhibits significant associations with fish intake (p=0.02), moderate alcohol consumption (p=0.01), education (p=3×10-5), BMI (p=0.01), and blood carotenoid levels (p=1×10-5)—an indicator of fruit and vegetable consumption, whereas intrinsic epigenetic age acceleration (IEAA) is associated with poultry intake (p=0.03) and BMI (p=0.05). Both EEAA and IEAA were also found to relate to indicators of metabolic syndrome, which appear to mediate their associations with BMI. Metformin—the first-line medication for the treatment of type 2 diabetes—does not delay epigenetic aging in this observational study. Finally, longitudinal data suggests that an increase in BMI is associated with increase in both EEAA and IEAA. Overall, the epigenetic age analysis of blood confirms the conventional wisdom regarding the benefits of eating a high plant diet with lean meats, moderate alcohol consumption, physical activity, and education, as well as the health risks of obesity and metabolic syndrome.


Social Science & Medicine | 2014

Evidence of accelerated aging among African Americans and its implications for mortality

Morgan E. Levine; Eileen M. Crimmins

Blacks experience morbidity and mortality earlier in the life course compared to whites. Such premature declines in health may be indicative of an acceleration of the aging process. The current study uses data on 7644 black and white participants, ages 30 and above, from the third National Health and Nutrition Examination Survey, to compare the biological ages of blacks and whites as indicated from a combination of ten biomarkers and to determine if such differences in biological age relative to chronological age account for racial disparities in mortality. At a specified chronological age, blacks are approximately 3 years older biologically than whites. Differences in biological age between blacks and whites appear to increase up until ages 60-65 and then decline, presumably due to mortality selection. Finally, differences in biological age were found to completely account for higher levels of all-cause, cardiovascular and cancer mortality among blacks. Overall, these results suggest that being black is associated with significantly higher biological age at a given chronological age and that this is a pathway to early death both overall and from the major age-related diseases.


Aging | 2016

DNA Methylation–Based Measures of Biological Aging

Brian H. Chen; Riccardo E. Marioni; Elena Colicino; Marjolein J. Peters; Cavin K. Ward-Caviness; Pei-Chien Tsai; Nicholas S. Roetker; Allan C. Just; Ellen W. Demerath; Weihua Guan; Jan Bressler; Myriam Fornage; Stephanie A. Studenski; Amy Vandiver; Ann Zenobia Moore; Toshiko Tanaka; Douglas P. Kiel; Liming Liang; Pantel S. Vokonas; Joel Schwartz; Kathryn L. Lunetta; Joanne M. Murabito; Stefania Bandinelli; Dena G. Hernandez; David Melzer; Michael A. Nalls; Luke C. Pilling; Timothy R. Price; Andrew Singleton; Christian Gieger

Abstract Aging is associated with profound changes in DNA methylation. Recent studies have used DNA methylation to build very accurate age predictors, also named “epigenetic clocks,” that deviate from chronological age by only a few years. The individual-specific deviation from chronological age—represented by the residual from a regression of predicted age on chronological age—has been interpreted as a biomarker of biological aging and referred to as “age acceleration” or “epigenetic aging.” Numerous studies have investigated such measures of biological aging based on DNA methylation and have found them to be associated with mortality, disease, and risk factors for disease. Although the biological significance of age acceleration measures is not yet fully characterized, they represent a promising tool for epidemiologists and clinicians to study health. Other attempts to characterize how age-associated methylation changes relate to health are likely to emerge in the near future.

Collaboration


Dive into the Morgan E. Levine's collaboration.

Top Co-Authors

Avatar

Eileen M. Crimmins

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Steve Horvath

University of California

View shared research outputs
Top Co-Authors

Avatar

Ake T. Lu

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian H. Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin Quach

University of California

View shared research outputs
Top Co-Authors

Avatar

Luigi Ferrucci

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Toshiko Tanaka

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge