Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morgan Newman is active.

Publication


Featured researches published by Morgan Newman.


PLOS ONE | 2013

The Guinea Pig as a Model for Sporadic Alzheimer's Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes

Mathew J. Sharman; Seyyed Hani Moussavi Nik; Mengqi M. Chen; Daniel Ong; Linda K. Wijaya; Simon M. Laws; Kevin Taddei; Morgan Newman; Michael Lardelli; Ralph N. Martins; Giuseppe Verdile

We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike rats and mice, guinea pigs possess an Aβ peptide sequence identical to human Aβ. Consistent with the commonality between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1 (β-secretase) transcription and down-regulation of ADAM10 (α-secretase) transcription which should increase release of Aβ from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats. For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and that increases γ-secretase activity and Aβ synthesis, is not uniquely human or aberrant as previously believed. We show that PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Aβ concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on the regulation of AD-related genes.


Frontiers in Genetics | 2014

Using the zebrafish model for Alzheimer’s disease research

Morgan Newman; Esmaeil Ebrahimie; Michael Lardelli

Rodent models have been extensively used to investigate the cause and mechanisms behind Alzheimer’s disease. Despite many years of intensive research using these models we still lack a detailed understanding of the molecular events that lead to neurodegeneration. Although zebrafish lack the complexity of advanced cognitive behaviors evident in rodent models they have proven to be a very informative model for the study of human diseases. In this review we give an overview of how the zebrafish has been used to study Alzheimer’s disease. Zebrafish possess genes orthologous to those mutated in familial Alzheimer’s disease and research using zebrafish has revealed unique characteristics of these genes that have been difficult to observe in rodent models. The zebrafish is becoming an increasingly popular model for the investigation of Alzheimer’s disease and will complement studies using other models to help complete our understanding of this disease.


Biochimica et Biophysica Acta | 2011

Zebrafish as a tool in Alzheimer's disease research

Morgan Newman; Giuseppe Verdile; Ralph N. Martins; Michael Lardelli

Alzheimers disease is the most prevalent form of neurodegenerative disease. Despite many years of intensive research our understanding of the molecular events leading to this pathology is far from complete. No effective treatments have been defined and questions surround the validity and utility of existing animal models. The zebrafish (and, in particular, its embryos) is a malleable and accessible model possessing a vertebrate neural structure and genome. Zebrafish genes orthologous to those mutated in human familial Alzheimers disease have been defined. Work in zebrafish has permitted discovery of unique characteristics of these genes that would have been difficult to observe with other models. In this brief review we give an overview of Alzheimers disease and transgenic animal models before examining the current contribution of zebrafish to this research area. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.


Experimental Cell Research | 2009

Independent and cooperative action of Psen2 with Psen1 in zebrafish embryos

Svanhild Nornes; Morgan Newman; Simon Wells; Giuseppe Verdile; Ralph N. Martins; Michael Lardelli

Presenilin1 (PSEN1) and presenilin2 (PSEN2) are involved in the processing of type-1 transmembrane proteins including the amyloid precursor protein (APP), Notch and several others. PSEN1 has been shown to be crucial for proteolytic cleavage of Notch in developing animal embryos. Mouse embryos lacking Psen1 function show disturbed neurogenesis and somite formation, resembling Notch pathway mutants. However, loss of Psen2 activity reveals only a minor phenotype. Zebrafish embryos are a valuable tool for analysis of the molecular genetic control of cell differentiation since endogenous gene expression can be modulated in subtle and complex ways to give a phenotypic readout. Using injection of morpholino antisense oligonucleotides to inhibit protein translation in zebrafish embryos, we show that reduced Psen2 activity decreases the number of melanocytes in the trunk but not in the cranial area at 2 days post fertilisation (dpf). Reduced Psen2 activity apparently reduces Notch signalling resulting in perturbed spinal neurogenin1 (neurog1) expression, neurogenesis and trunk and tail neural crest development. Similar effects are seen for reduced Psen1 activity. These results suggest that Psen2 plays a more prominent role in Notch signalling and embryo development in zebrafish than in mammals. Intriguingly, decreased Psen2 activity increases the number of Dorsal Longitudinal Ascending (DoLA) interneurons in the spinal cord while decreased Psen1 activity has no effect. However, the effect on DoLAs of reduced Psen2 can be ameliorated by Psen1 loss. The effects of changes in Psen2 activity on DoLA interneurons and other cells in zebrafish embryos provide bioassays for more detailed dissection of Psen2 function.


Journal of Alzheimer's Disease | 2009

Altering presenilin gene activity in zebrafish embryos causes changes in expression of genes with potential involvement in Alzheimer's disease pathogenesis.

Morgan Newman; Ben Tucker; Svanhild Nornes; Alister C. Ward; Michael Lardelli

Aberrant splicing and point mutations in the human presenilin genes, PSEN1 and PSEN2, have been linked to familial forms of Alzheimers disease. We have previously described that low-level aberrant splicing of exon 8 in zebrafish psen1 transcripts in zebrafish embryos produces potent dominant negative effects that increase psen1 transcription, cause a dramatic hydrocephalus phenotype, decreased pigmentation and other developmental defects. Similar effects are also observed after low-level interference with splicing of exon 8 of psen2. To determine the molecular etiology of these effects, we performed microarray analyses of global gene expression changes. Of the 100 genes that showed greatest dysregulation after either psen1 or psen2 manipulation, 12 genes were common to both treatments. Five of these have known function and showed increased expression: cyclin G1 (ccng1), prosaposin (psap), cathepsin Lb (ctslb), heat shock protein 70kDa (hsp70) and hatching enzyme 1 (he1). We used phylogenetic and conserved synteny analysis to confirm the orthology of zebrafish ccng1 with human CCNG1. We analyzed the expression of zebrafish ccng1 in developing embryos to 24 hours post fertilization (hpf). Decreased ccng1 expression does not rescue the hydrocephalus or pigmentation phenotypes of embryos with aberrant splicing of psen1 exon 8.


Human Molecular Genetics | 2014

Differential, dominant activation and inhibition of Notch signalling and APP cleavage by truncations of PSEN1 in human disease

Morgan Newman; Lachlan Wilson; Giuseppe Verdile; Anne Lim; Imran Khan; Seyyed Hani Moussavi Nik; S.E. Pursglove; Gavin Chapman; Ralph N. Martins; Michael Lardelli

PRESENILIN1 (PSEN1) is the major locus for mutations causing familial Alzheimers disease (FAD) and is also mutated in Pick disease of brain, familial acne inversa and dilated cardiomyopathy. It is a critical facilitator of Notch signalling and many other signalling pathways and protein cleavage events including production of the Amyloidβ (Aβ) peptide from the AMYLOID BETA A4 PRECURSOR PROTEIN (APP). We previously reported that interference with splicing of transcripts of the zebrafish orthologue of PSEN1 creates dominant negative effects on Notch signalling. Here, we extend this work to show that various truncations of human PSEN1 (or zebrafish Psen1) protein have starkly differential effects on Notch signalling and cleavage of zebrafish Appa (a paralogue of human APP). Different truncations can suppress or stimulate Notch signalling but not Appa cleavage and vice versa. The G183V mutation possibly causing Pick disease causes production of aberrant transcripts truncating the open reading frame after exon 5 sequence. We show that the truncated protein potentially translated from these transcripts avidly incorporates into very stable Psen1-dependent higher molecular weight complexes and suppresses cleavage of Appa but not Notch signalling. In contrast, the truncated protein potentially produced by the P242LfsX11 acne inversa mutation has no effect on Appa cleavage but, unexpectedly, enhances Notch signalling. Our results suggest novel hypotheses for the pathological mechanisms underlying these diseases and illustrate the importance of investigating the function of dominant mutations at physiologically relevant expression levels and in the normally heterozygous state in which they cause human disease rather than in isolation from healthy alleles.


Zebrafish | 2010

A Zebrafish Melanophore Model of Amyloidβ Toxicity

Morgan Newman; Lachlan Wilson; Esther Camp; Giuseppe Verdile; Ralph N. Martins; Michael Lardelli

Reliable animal models are required to facilitate the understanding of neurodegenerative pathways in Alzheimers disease. Animal models can also be employed to search for disease-modifying drugs. The embryos and larvae of zebrafish are particularly advantageous for this purpose. For Alzheimers disease, drugs that can ameliorate amyloid beta (A beta) toxicity have therapeutic and/or prophylactic potential. We attempted to generate a zebrafish model of A beta toxicity that would be viable and fertile but have a highly visible pigmentation phenotype in larvae. The larvae could then be arrayed in microtiter plates to screen compound libraries for drugs acting to reduce A beta toxicity. We used the promoter of the zebrafish mitfa (nacre) gene to drive expression of the pathological 42 amino acid species of human A beta, A beta(42), specifically in the highly visible melanophores (melanocytes) of transgenic zebrafish. However, the transgenic fish only showed an aberrant pigment phenotype in adults at the advanced age of 16 months. Nevertheless, our results show that alteration of zebrafish pigment pattern may be useful for analysis of toxic peptide action.


BMC Research Notes | 2014

Hypoxia alters expression of Zebrafish Microtubule-associated protein Tau (mapta, maptb) gene transcripts

Seyyed Hani Moussavi Nik; Morgan Newman; Swamynathan Ganesan; Mengqi Chen; Ralph N. Martins; Giuseppe Verdile; Michael Lardelli

BackgroundMicrotubule-associated protein tau (MAPT) is abundant in neurons and functions in assembly and stabilization of microtubules to maintain cytoskeletal structure. Human MAPT transcripts undergo alternative splicing to produce 3R and 4R isoforms normally present at approximately equal levels in the adult brain. Imbalance of the 3R-4R isoform ratio can affect microtubule binding and assembly and may promote tau hyperphosphorylation and neurofibrillary tangle formation as seen in neurodegenerative diseases such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD). Conditions involving hypoxia such as cerebral ischemia and stroke can promote similar tau pathology but whether hypoxic conditions cause changes in MAPT isoform formation has not been widely explored. We previously identified two paralogues (co-orthologues) of MAPT in zebrafish, mapta and maptb.ResultsIn this study we assess the splicing of transcripts of these genes in adult zebrafish brain under hypoxic conditions. We find hypoxia causes increases in particular mapta and maptb transcript isoforms, particularly the 6R and 4R isoforms of mapta and maptb respectively. Expression of the zebrafish orthologue of human TRA2B, tra2b, that encodes a protein binding to MAPT transcripts and regulating splicing, was reduced under hypoxic conditions, similar to observations in AD brain.ConclusionOverall, our findings indicate that hypoxia can alter splicing of zebrafish MAPT co-orthologues promoting formation of longer transcripts and possibly generating Mapt proteins more prone to hyperphosphorylation. This supports the use of zebrafish to provide insight into the mechanisms regulating MAPT transcript splicing under conditions that promote neuronal dysfunction and degeneration.


Journal of Alzheimer's Disease | 2012

The BACE1-PSEN-AβPP Regulatory Axis has an Ancient Role in Response to Low Oxygen/Oxidative Stress

Seyyed Hani Moussavi Nik; Lachlan Wilson; Morgan Newman; Kevin D. Croft; Trevor A. Mori; Ian F. Musgrave; Michael Lardelli

Oxygen homeostasis is essential for the development and normal physiology of an organism. Hypoxia causes the mitochondrial electron transport chain to generate higher levels of reactive oxygen species resulting in oxidative stress. Hypoxia can be a direct consequence of hypoperfusion, a common vascular component among Alzheimers disease (AD) risk factors, and may play an important role in AD pathogenesis. Beta-site amyloid-β A4 precursor protein-cleaving enzyme 1 (BACE1) is responsible, with γ-secretase, for cleavage of the amyloid-β protein precursor (AβPP) to produce amyloid-β (Aβ) peptide. A recent study observed that oxidative stress increases BACE1 expression via a regulatory pathway dependent on γ-secretase cleavage of AβPP and this increases Aβ peptide production. Zebrafish embryos represent normal cells in which complex and subtle manipulations of gene activity can be performed to facilitate analysis of genes involved in human disease. Here we identify and describe the expression of bace1, the zebrafish ortholog of human BACE1. We observe that the zebrafish AD-related genes bace1, psen1, psen2, appa, and appb all show increased mRNA levels under hypoxia. A dominant negative form of psen1 putatively blocking γ-secretase activity blocks bace1 upregulation under hypoxia. Hypoxia increases catalase gene mRNA indicating increased oxidative stress but we did not observe increased levels of F2-isoprostanes that indicate peroxidation of arachidonic acid, possibly due to relatively low levels of arachidonic acid in zebrafish. Our results demonstrate that upregulation of PSEN1 & 2, AβPP and the γ-secretase-dependent upregulation of BACE1 is an ancient, conserved, and thus selectively advantageous response to hypoxia/oxidative stress.


Human Molecular Genetics | 2015

Alzheimer's disease-related peptide PS2V plays ancient, conserved roles in suppression of the unfolded protein response under hypoxia and stimulation of γ-secretase activity

Seyyed Hani Moussavi Nik; Morgan Newman; Lachlan Wilson; Esmaeil Ebrahimie; Simon Wells; Ian F. Musgrave; Giuseppe Verdile; Ralph N. Martins; Michael Lardelli

The PRESENILIN1 and PRESENILIN2 genes encode structurally related proteases essential for γ-secretase activity. Of nearly 200 PRESENILIN mutations causing early onset, familial Alzheimers disease (FAD) only the K115Efx10 mutation of PSEN2 causes truncation of the open reading frame. If translated, the truncated product would resemble a naturally occurring isoform of PSEN2 named PS2V that is induced by hypoxia and found at elevated levels in late onset Alzheimers disease (AD) brains. The function of PS2V is largely unexplored. We show that zebrafish possess a PS2V-like isoform, PS1IV, produced from the fishs PSEN1 rather than PSEN2 orthologous gene. The molecular mechanism controlling formation of PS2V/PS1IV was probably present in the ancient common ancestor of the PSEN1 and PSEN2 genes. Human PS2V and zebrafish PS1IV have highly divergent structures but conserved abilities to stimulate γ-secretase activity and to suppress the unfolded protein response (UPR) under hypoxia. The putative protein truncation caused by K115Efx10 resembles PS2V in its ability to increase γ-secretase activity and suppress the UPR. This supports increased Aβ levels as a common link between K115Efx10 early onset AD and sporadic, late onset AD. The ability of mutant variants of PS2V to stimulate γ-secretase activity partially correlates with their ability to suppress the UPR. The cytosolic, transmembrane and luminal domains of PS2V are all critical to its γ-secretase and UPR-suppression activities. Our data support a model in which chronic hypoxia in aged brains promotes excessive Notch signalling and accumulation of Aβ that contribute to AD pathogenesis.

Collaboration


Dive into the Morgan Newman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Tucker

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge