Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morgan T. Page is active.

Publication


Featured researches published by Morgan T. Page.


Bulletin of the Seismological Society of America | 2015

Long-Term Time-Dependent Probabilities for the Third Uniform California Earthquake Rupture Forecast (UCERF3)

Edward H. Field; Glenn P. Biasi; Peter Bird; Timothy E. Dawson; Karen R. Felzer; David A. Jackson; Kaj M. Johnson; Thomas H. Jordan; Christopher Madden; Andrew J. Michael; Kevin Milner; Morgan T. Page; Tom Parsons; Peter M. Powers; Bruce E. Shaw; Wayne Thatcher; Ray J. Weldon; Yuehua Zeng

The 2014 Working Group on California Earthquake Probabilities (WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-in- dependent model published previously, renewal models are utilized to represent elastic- rebound-implied probabilities. A new methodology has been developed that solves applicability issues in the previous approach for unsegmented models. The new meth- odology also supports magnitude-dependent aperiodicity and accounts for the historic open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties are represented with a logic tree, producing 5760 different forecasts. Results for a variety of evaluation metrics are presented, including logic-tree sensitivity analyses and comparisons to the previous model (UCERF2). For 30 yr M ! 6:7 probabilities, the most significant changes from UCERF2 are a threefold increase on the Calaveras fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to differences in the time-independent models (e.g., fault-slip rates), with relaxation of segmentation and inclusion of multifault ruptures being particularly influential. In fact, some UCERF2 faults were simply too long to produce M 6.7 size events given the segmentation assumptions in that study. Probability model differences are also influential, with the implied gains (relative to a Poisson model) being generally higher in UCERF3. Accounting for the historic open interval is one reason. Another is an effective 27% increase in the total elastic-rebound-model weight. The exact factors influencing differences between UCERF2 and UCERF3, as well as the relative im- portance of logic-tree branches, vary throughout the region and depend on the evalu- ation metric of interest. For example, M ! 6:7 probabilities may not be a good proxy for other hazard or loss measures. This sensitivity, coupled with the approximate nature of the model and known limitations, means the applicability of UCERF3 should be evaluated on a case-by-case basis.


Journal of Geophysical Research | 2009

Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts

Morgan T. Page; Susana Custódio; Ralph J. Archuleta; Jean M. Carlson

[1] We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model.


Bulletin of the Seismological Society of America | 2007

Effects of Large-Scale Surface Topography on Ground Motions, as Demonstrated by a Study of the San Gabriel Mountains, Los Angeles, California

Shuo Ma; Ralph J. Archuleta; Morgan T. Page

We investigate the effects of large-scale surface topography on ground motions generated by nearby faulting. We show a specific example studying the effect of the San Gabriel Mountains, which are bounded by the Mojave segment of the San Andreas fault on the north and by the Los Angeles Basin on the south. By si- mulating a Mw 7.5 earthquake on the Mojave segment of the San Andreas fault, we show that the San Gabriel Mountains act as a natural seismic insulator for metropo- litan Los Angeles. The topography of the mountains scatters the surface waves gen- erated by the rupture on the San Andreas fault, leading to less-efficient excitation of basin-edge generated waves and natural resonances within the Los Angeles Basin. The effect of the mountains reduces the peak amplitude of ground velocity for some regions in the basin by as much as 50% in the frequency band up to 0.5 Hz. These results suggest that, depending on the relative location of faulting and the nearby large-scale topography, the topography can shield some areas from ground shaking.


The Astrophysical Journal | 2002

The TeV spectrum of H1426+428

D. Petry; I. H. Bond; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; Wei Cui; C. Duke; I. de la Calle Perez; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; J. A. Gaidos; K. Gibbs; S. Gammell; J. Hall; T. A. Hall; A. M. Hillas; J. Holder; D. Horan; M. Jordan; M. Kertzman; D. Kieda; J. Kildea; J. Knapp; K. Kosack; F. Krennrich; S. LeBohec; P. Moriarty; D. Müller

The BL Lac object H1426+428 was recently detected as a high-energy γ-ray source by the VERITAS collaboration (Horan et al.). We have reanalyzed the 2001 portion of the data used in the detection in order to examine the spectrum of H1426+428 above 250 GeV. We find that the time-averaged spectrum agrees with a power law of the shape The statistical evidence from our data for emission above 2.5 TeV is 2.6 σ. At the 95% confidence level, the integral flux of H1426+428 above 2.5 TeV is larger than 3% of the corresponding flux from the Crab Nebula. The spectrum is consistent with the (noncontemporaneous) measurement by Aharonian et al. both in shape and in normalization. Below 800 GeV, the data clearly favor a spectrum steeper than that of any other TeV blazar observed so far, indicating a difference in the processes involved either at the source or in the intervening space.


Journal of Geophysical Research | 2016

Induced earthquake magnitudes are as large as (statistically) expected

Nicholas J. van der Elst; Morgan T. Page; Deborah Weiser; Thomas Goebel; S. Mehran Hosseini

A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.


Seismological Research Letters | 2016

The Earthquake‐Source Inversion Validation (SIV) Project

P. Martin Mai; Danijel Schorlemmer; Morgan T. Page; Jean-Paul Ampuero; Kimiyuki Asano; Mathieu Causse; Susana Custódio; Wenyuan Fan; Gaetano Festa; Martin Galis; František Gallovič; Walter Imperatori; Martin Käser; Dmytro Malytskyy; Ryo Okuwaki; Fred F. Pollitz; Luca Passone; Hoby N. T. Razafindrakoto; Haruko Sekiguchi; Seok Goo Song; S. Somala; Kiran K. S. Thingbaijam; Cedric Twardzik; Martin van Driel; Jagdish Vyas; Rongjiang Wang; Yuji Yagi; Olaf Zielke

Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward-modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source-model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake-source imaging problem.


Journal of Geophysical Research | 2011

The magnitude distribution of earthquakes near Southern California faults

Morgan T. Page; David L. Alderson; John C. Doyle

We investigate seismicity near faults in the Southern California Earthquake Center Community Fault Model. We search for anomalously large events that might be signs of a characteristic earthquake distribution. We find that seismicity near major fault zones in Southern California is well modeled by a Gutenberg-Richter distribution, with no evidence of characteristic earthquakes within the resolution limits of the modern instrumental catalog. However, the b value of the locally observed magnitude distribution is found to depend on distance to the nearest mapped fault segment, which suggests that earthquakes nucleating near major faults are likely to have larger magnitudes relative to earthquakes nucleating far from major faults.


Bulletin of the Seismological Society of America | 2011

Estimating Earthquake-Rupture Rates on a Fault or Fault System

Edward H. Field; Morgan T. Page

Previous approaches used to determine the rates of different earthquakes on a fault have made assumptions regarding segmentation, have been difficult to document and reproduce, and have lacked the ability to satisfy all available data constraints. We present a relatively objective and reproducible inverse methodology for determining the rate of different ruptures on a fault or fault system. The data used in the inversion include slip rate, event rate, and other constraints such as an optional a priori magnitude–frequency distribution. We demonstrate our methodology by solving for the long-term rate of ruptures on the southern San Andreas fault. Our results imply that a Gutenberg–Richter distribution is consistent with the data available for this fault; however, more work is needed to test the robustness of this assertion. More importantly, the methodology is extensible to an entire fault system (thereby including multifault ruptures) and can be used to quantify the relative benefits of collecting additional paleoseismic data at different sites.


The Astrophysical Journal | 2003

Search for high-energy gamma rays from an X-ray-selected blazar sample

I. de la Calle Perez; I. H. Bond; Patrick J. Boyle; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; Wei Cui; C. Dowdall; C. Duke; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; J. A. Gaidos; K. G. Gibbs; S. Gammell; J. Hall; T. A. Hall; A. M. Hillas; J. Holder; D. Horan; M. Jordan; M. Kertzman; D. Kieda; J. Kildea; J. Knapp; K. Kosack; H. Krawczynski

Our understanding of blazars has been greatly increased in recent years by extensive multiwavelength observations, particularly in the radio, X-ray, and gamma-ray regions. Over the past decade the Whipple 10 m telescope has contributed to this with the detection of five BL Lacertae objects at very high gamma-ray energies. The combination of multiwavelength data has shown that blazars follow a well-defined sequence in terms of their broadband spectral properties. Together with providing constraints on emission models, this information has yielded a means by which potential sources of TeV emission may be identified and predictions made as to their possible gamma-ray flux. We have used the Whipple telescope to search for TeV gamma-ray emission from eight objects selected from a list of such candidates. No evidence has been found for very high energy emission from the objects in our sample, and upper limits have been derived for the mean gamma-ray flux above 390 GeV. These flux upper limits are compared with the model predictions, and the implications of our results for future observations are discussed.


Science | 2014

The New Madrid Seismic Zone: Not Dead Yet

Morgan T. Page; Susan E. Hough

Statistical modeling of aftershock occurrences shows that the central United States is still active, despite low active deformation rates. The extent to which ongoing seismicity in intraplate regions represents long-lived aftershock activity is unclear. We examined historical and instrumental seismicity in the New Madrid central U.S. region to determine whether present-day seismicity is composed predominantly of aftershocks of the 1811–1812 earthquake sequence. High aftershock productivity is required both to match the observation of multiple mainshocks and to explain the modern level of activity as aftershocks; synthetic sequences consistent with these observations substantially overpredict the number of events of magnitude ≥ 6 that were observed in the past 200 years. Our results imply that ongoing background seismicity in the New Madrid region is driven by ongoing strain accrual processes and that, despite low deformation rates, seismic activity in the zone is not decaying with time. Rolling Under New Madrid During 1811–1812, the New Madrid Seismic Zone experienced a sequence of three large intraplate earthquakes and at least one comparably sized aftershock. There have been no earthquakes of similar magnitudes since then. Using a combination of historical data dating back to the original large events and an epidemic-type aftershock sequence model, Page and Hough (p. 762, published online 23 January) found that the current low seismicity is not part of an aftershock sequence. Instead, despite low observable deformation rates, there is ongoing accumulation of strain, leaving the potential for large earthquakes in the region.

Collaboration


Dive into the Morgan T. Page's collaboration.

Top Co-Authors

Avatar

Edward H. Field

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Michael

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Karen R. Felzer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kevin Milner

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Nicholas J. van der Elst

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Peter M. Powers

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Thomas H. Jordan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tom Parsons

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge