Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moriel Vandsburger is active.

Publication


Featured researches published by Moriel Vandsburger.


NMR in Biomedicine | 2013

MRI reporter genes: applications for imaging of cell survival, proliferation, migration and differentiation

Moriel Vandsburger; Marina Radoul; Batya Cohen; Michal Neeman

Molecular imaging strives to detect molecular events at the level of the whole organism. In some cases, the molecule of interest can be detected either directly or with targeted contrast media. However many genes and proteins and particularly those located in intracellular compartments are not accessible for targeted agents. The transcriptional regulation of these genes can nevertheless be detected, although indirectly, using reporter gene encoding for readily detectable proteins. Such reporter proteins can be expressed in the tissue of interest by genetically introducing the reporter gene in the target cells. Imaging of reporter genes has become a powerful tool in modern biomedical research. Typically, expression of fluorescent and bioluminescent proteins and the reaction product of expressed enzymes and exogenous substrates were examined using in vitro histological methods and in vivo whole body imaging methods. Recent advances in MRI reporter gene methods raised the possibility that MRI could become a powerful tool for concomitant high‐resolution anatomical and functional imaging and for imaging of reporter gene activity. An immediate application of MRI reporter gene methods was by monitoring gene expression patterns in gene therapy and in vivo imaging of the survival, proliferation, migration and differentiation of pluripotent and multipotent cells used in cell‐based regenerative therapies for cancer, myocardial infarction and neural degeneration. In this review, we characterized a variety of MRI reporter gene methods based on their applicability to report cell survival/proliferation, migration and differentiation. In particular, we discussed which methods were best suited for translation to clinical use in regenerative therapies. Copyright


Radiology | 2012

Monocyte and/or macrophage infiltration of heart after myocardial infarction: MR imaging by using T1-shortening liposomes.

Nivedita K Naresh; Yaqin Xu; Alexander L. Klibanov; Moriel Vandsburger; Craig H. Meyer; Jonathan Leor; Christopher M. Kramer; Brent A. French; Frederick H. Epstein

PURPOSE To test the hypothesis that magnetic resonance (MR) imaging R1 (R1 = 1/T1) mapping after selectively labeling monocytes with a T1-shortening contrast agent in vivo would enable the quantitative measurement of their spatiotemporal kinetics in the setting of infarct healing. MATERIALS AND METHODS All procedures were performed in mice and were approved by the institutional committee on animal research. One hundred microliters of dual-labeled liposomes (DLLs) containing gadolinium (Gd)-diethylenetriaminepentaacetic acid (DTPA)-bis(stearylamide) and DiI dye were used to label monocytes 2 days before myocardial infarction (MI). MI was induced by occlusion of the left anterior descending coronary artery for 1 hour, followed by reperfusion. MR imaging R1 mapping of mouse hearts was performed at baseline on day -3, on day 0 before MI, and on days 1, 4, and 7 after MI. Mice without labeling were used as controls. ΔR1 was calculated as the difference in R1 between mice with labeling and those without labeling. CD68 immunohistochemistry and DiI fluorescence microscopy were used to confirm that labeled monocytes and/or macrophages infiltrated the postinfarct myocardium. Statistical analysis was performed by using two-way analysis of variance and the unpaired two-sample t test. RESULTS Infarct zone ΔR1 was slightly but nonsignificantly increased on day 1, maximum on day 4 (P < .05 vs all other days), and started to decrease by day 7 (P < .05 vs days -3, 0, and 1) after MI, closely reflecting the time course of monocyte and/or macrophage infiltration of the infarcted myocardium shown by prior histologic studies. Histologic results confirmed the presence and location of DLL-labeled monocytes and/or macrophages in the infarct zone on day 4 after MI. CONCLUSION R1 mapping after labeling monocytes with T1-shortening DLLs enables the measurement of post-MI monocyte and/or macrophage spatiotemporal kinetics.


Journal of Cardiovascular Translational Research | 2011

Emerging MRI Methods in Translational Cardiovascular Research

Moriel Vandsburger; Frederick H. Epstein

Cardiac magnetic resonance imaging (CMR) has become a reference standard modality for imaging of left ventricular (LV) structure and function and, using late gadolinium enhancement, for imaging myocardial infarction. Emerging CMR techniques enable a more comprehensive examination of the heart, making CMR an excellent tool for use in translational cardiovascular research. Specifically, emerging CMR methods have been developed to measure the extent of myocardial edema, changes in ventricular mechanics, changes in tissue composition as a result of fibrosis, and changes in myocardial perfusion as a function of both disease and infarct healing. New CMR techniques also enable the tracking of labeled cells, molecular imaging of biomarkers of disease, and changes in calcium flux in cardiomyocytes. In addition, MRI can quantify blood flow velocity and wall shear stress in large blood vessels. Almost all of these techniques can be applied in both pre-clinical and clinical settings, enabling both the techniques themselves and the knowledge gained using such techniques in pre-clinical research to be translated from the lab bench to the patient bedside.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Displacement-encoded and manganese-enhanced cardiac MRI reveal that nNOS, not eNOS, plays a dominant role in modulating contraction and calcium influx in the mammalian heart

Moriel Vandsburger; Brent A. French; Christopher M. Kramer; Xiaodong Zhong; Frederick H. Epstein

Within cardiomyocytes, endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) are thought to modulate L-type calcium channel (LTCC) function and sarcoplasmic reticulum calcium cycling, respectively. However, divergent results from mostly invasive prior studies suggest more complex roles. To elucidate the roles of nNOS and eNOS in vivo, we applied noninvasive cardiac MRI to study wild-type (WT), eNOS(-/-), and nNOS(-/-) mice. An in vivo index of LTCC flux (LTCCI) was measured at baseline (Bsl), dobutamine (Dob), and dobutamine + carbacholamine (Dob + CCh) using manganese-enhanced MRI. Displacement-encoded MRI assessed contractile function by measuring circumferential strain (E(cc)) and systolic (dE(cc)/dt) and diastolic (dE(cc)/dt(diastolic)) strain rates at Bsl, Dob, and Dob + CCh. Bsl LTCCI was highest in nNOS(-/-) mice (P < 0.05 vs. WT and eNOS(-/-)) and increased only in WT and eNOS(-/-) mice with Dob (P < 0.05 vs. Bsl). LTCCI decreased significantly from Dob levels with Dob + CCh in all mice. Contractile function, as assessed by E(cc), was similar in all mice at Bsl. With Dob, E(cc) increased significantly in WT and eNOS(-/-) but not nNOS(-/-) mice (P < 0.05 vs. WT and eNOS(-/-)). With Dob + CCh, E(cc) returned to baseline levels in all mice. Systolic blood pressure, measured via tail plethysmography, was highest in eNOS(-/-) mice (P < 0.05 vs. WT and nNOS(-/-)). Mice deficient in nNOS demonstrate increased Bsl LTCC function and an attenuated contractile reserve to Dob, whereas eNOS(-/-) mice demonstrate normal LTCC and contractile function under all conditions. These results suggest that nNOS, not eNOS, plays the dominant role in modulating Ca(2+) cycling in the heart.


Radiology | 2013

Ovarian Carcinoma: Quantitative Biexponential MR Imaging Relaxometry Reveals the Dynamic Recruitment of Ferritin-expressing Fibroblasts to the Angiogenic Rim of Tumors

Moriel Vandsburger; Marina Radoul; Yoseph Addadi; Senzeni Mpofu; Batya Cohen; Raya Eilam; Michal Neeman

PURPOSE To quantitatively monitor the dynamic perivascular recruitment of ferritin heavy chain (FHC)-overexpressing fibroblasts to ovarian carcinoma xenografts by using R2 mapping and biexponential magnetic resonance (MR) relaxometry. MATERIALS AND METHODS In vivo studies of female mice were approved by the institutional animal care and use committee. In vitro analysis included MR-based R2 relaxation measurements of monkey kidney cell line (CV1) fibroblasts that overexpress FHC, followed by inductively coupled plasma mass spectrometry to assess cellular iron content. For in vivo analysis, CV1-FHC fibroblasts were either mixed with fluorescent human ovarian carcinoma cells before subcutaneous implantation (coinjection) or injected intraperitoneally 4 days after the cancer cells were injected (remote recruitment). Dynamic changes in tumor R2 were used to derive CV1-FHC cell fraction in both models. In coinjection tumors, dynamic contrast material-enhanced MR imaging was used to measure tumor fractional blood volume. Whole-body fluorescence imaging and immunohistochemical staining were performed to validate MR results. One-way repeated measures analysis of variance was used to assess MR and fluorescence imaging results and tumor volume, and one-way analysis of variance was used to assess spectrometric results, fractional blood volume, and immunohistochemical evaluation. RESULTS CV1-FHC fibroblasts (vs CV1 fibroblasts) showed enhanced iron uptake (1.8 mmol ± 0.5 × 10(-8) vs 0.9 mmol ± 0.5 × 10(-8); P < .05), retention (1.6 mmol ± 0.5 × 10(-8) vs 0.5 mmol ± 0.5 × 10(-8), P < .05), and cell density-dependent R2 contrast. R2 mapping in vivo revealed preferential recruitment of CV1-FHC cells to the tumor rim in both models. Measurement of fractional blood volume was similar in all tumors (2.6 AU ± 0.5 × 10(-3) for CV1, 2.3 AU ± 0.3 × 10(-3) for CV1-FHC, 2.9 ± 0.3 × 10(-3) for CV1-FHC-ferric citrate). Dynamic changes in CV1-FHC cell fraction determined at MR relaxometry in both models were confirmed at immunohistochemical analysis. CONCLUSION FHC overexpression, when combined with R2 mapping and MR relaxometry, enabled in vivo detection of the dynamic recruitment of exogenously administered fibroblasts to the vasculature of solid tumors.


Circulation-cardiovascular Imaging | 2014

Cardio-Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Reveals Molecular Signatures of Endogenous Fibrosis and Exogenous Contrast Media

Moriel Vandsburger; Katrien Vandoorne; Roni Oren; Avigdor Leftin; Senzeni Mpofu; Daniela Delli Castelli; Silvio Aime; Michal Neeman

Background—Application of emerging molecular MRI techniques, including chemical exchange saturation transfer (CEST)-MRI, to cardiac imaging is desirable; however, conventional methods are poorly suited for cardiac imaging, particularly in small animals with rapid heart rates. We developed a CEST-encoded steady state and retrospectively gated cardiac cine imaging sequence in which the presence of fibrosis or paraCEST contrast agents was directly encoded into the steady-state myocardial signal intensity (cardioCEST). Methods and Results—Development of cardioCEST: A CEST-encoded cardiac cine MRI sequence was implemented on a 9.4T small animal scanner. CardioCEST of fibrosis was serially performed by acquisition of a series of CEST-encoded cine images at multiple offset frequencies in mice (n=7) after surgically induced myocardial infarction. Scar formation was quantified using a spectral modeling approach and confirmed with histological staining. Separately, circulatory redistribution kinetics of the paramagnetic CEST agent Eu-HPDO3A were probed in mice using cardioCEST imaging, revealing rapid myocardial redistribution, and washout within 30 minutes (n=6). Manipulation of vascular tone resulted in heightened peak CEST contrast in the heart, but did not alter redistribution kinetics (n=6). At 28 days after myocardial infarction (n=3), CEST contrast kinetics in infarct zone tissue were altered, demonstrating gradual accumulation of Eu-HPDO3A in the increased extracellular space. Conclusions—cardioCEST MRI enables in vivo imaging of myocardial fibrosis using endogenous contrast mechanisms, and of exogenously delivered paraCEST agents, and can enable multiplexed imaging of multiple molecular targets at high-resolution coupled with conventional cardiac MRI scans.


NMR in Biomedicine | 2016

Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for in vivo cell tracking and metabolic imaging.

Ashley Pumphrey; Zhengshi Yang; Shaojing Ye; David K. Powell; Scott Thalman; David S. Watt; Ahmed Abdel-Latif; Jason M. Unrine; Katherine L. Thompson; Brandon K. Fornwalt; Giuseppe Ferrauto; Moriel Vandsburger

An improved pre‐clinical cardiac chemical exchange saturation transfer (CEST) pulse sequence (cardioCEST) was used to selectively visualize paramagnetic CEST (paraCEST)‐labeled cells following intramyocardial implantation. In addition, cardioCEST was used to examine the effect of diet‐induced obesity upon myocardial creatine CEST contrast. CEST pulse sequences were designed from standard turbo‐spin‐echo and gradient‐echo sequences, and a cardiorespiratory‐gated steady‐state cine gradient‐echo sequence. In vitro validation studies performed in phantoms composed of 20 mM Eu‐HPDO3A, 20 mM Yb‐HPDO3A, or saline demonstrated similar CEST contrast by spin‐echo and gradient‐echo pulse sequences. Skeletal myoblast cells (C2C12) were labeled with either Eu‐HPDO3A or saline using a hypotonic swelling procedure and implanted into the myocardium of C57B6/J mice. Inductively coupled plasma mass spectrometry confirmed cellular levels of Eu of 2.1 × 10−3 ng/cell in Eu‐HPDO3A‐labeled cells and 2.3 × 10−5 ng/cell in saline‐labeled cells. In vivo cardioCEST imaging of labeled cells at ±15 ppm was performed 24 h after implantation and revealed significantly elevated asymmetric magnetization transfer ratio values in regions of Eu‐HPDO3A‐labeled cells when compared with surrounding myocardium or saline‐labeled cells. We further utilized the cardioCEST pulse sequence to examine changes in myocardial creatine in response to diet‐induced obesity by acquiring pairs of cardioCEST images at ±1.8 ppm. While ventricular geometry and function were unchanged between mice fed either a high‐fat diet or a corresponding control low‐fat diet for 14 weeks, myocardial creatine CEST contrast was significantly reduced in mice fed the high‐fat diet. The selective visualization of paraCEST‐labeled cells using cardioCEST imaging can enable investigation of cell fate processes in cardioregenerative medicine, or multiplex imaging of cell survival with imaging of cardiac structure and function and additional imaging of myocardial creatine. Copyright


Current Cardiovascular Imaging Reports | 2014

Cardiac Cell Tracking with MRI Reporter Genes: Welcoming a New Field

Moriel Vandsburger

Research into cell therapy based cardiac repair and regeneration has experienced explosive growth over the last decade, however further progress is hindered by an inability to serially and non-invasively image cell survival and fate decisions following implantation. Recent advances in magnetic resonance imaging (MRI) reporter gene techniques have enabled in vivo imaging of cell survival, proliferation, migration, and differentiation, however this has mostly been performed in stationary tissues. A small series of recent studies has examined the possibility of using MRI reporter genes to track the survival of cells injected into the heart following myocardial infarction. In this review, we seek to frame the emerging field of MRI reporter gene based cardiac cell tracking within the larger framework of the needs of cardiac regeneration therapy and the more established field of MRI cell tracking. While initial studies have demonstrated a promising ability to track the viability and proliferation of cells used for cell therapy, the ultimate goal of MR reporter gene imaging in the heart remains the ability to simultaneously correlate cell fate decisions with additional measures of structural and functional recovery.


Circulation-cardiovascular Imaging | 2013

Chronic Akt1 deficiency attenuates adverse remodeling and enhances angiogenesis after myocardial infarction.

Katrien Vandoorne; Moriel Vandsburger; Tal Raz; Moran Shalev; Karen Weisinger; Inbal E. Biton; Vlad Brumfeld; Calanit Raanan; Nava Nevo; Raya Eilam; Brian A. Hemmings; Eldad Tzahor; Alon Harmelin; Lior Gepstein; Michal Neeman

Background—Akt1 is a key signaling molecule in multiple cell types, including endothelial cells. Accordingly, Akt1 was proposed as a therapeutic target for ischemic injury in the context of myocardial infarction (MI). The aim of this study was to use multimodal in vivo imaging to investigate the impact of systemic Akt1 deficiency on cardiac function and angiogenesis before and after MI. Methods and Results—In vivo cardiac MRI was performed before and at days 1, 8, 15, and 29 to 30 after MI induction for wild-type, heterozygous, and Akt1-deficient mice. Noninfarcted hearts were imaged using ex vivo stereomicroscopy and microcomputed tomography. Histological examination was performed for noninfarcted hearts and for hearts at days 8 and 29 to 30 after MI. MRI revealed mildly decreased baseline cardiac function in Akt1 null mice, whereas ex vivo stereomicroscopy and microcomputed tomography revealed substantially reduced coronary macrovasculature. After MI, Akt1–/– mice demonstrated significantly attenuated ventricular remodeling and a smaller decrease in ejection fraction. At 8 days after MI, a larger functional capillary network at the remote and border zone, accompanied by reduced scar extension, preserved cardiac function, and enhanced border zone wall thickening, was observed in Akt1–/– mice when compared with littermate controls. Conclusions—Using multimodal imaging to probe the role of Akt1 in cardiac function and remodeling after MI, this study revealed reduced adverse remodeling in Akt1-deficient mice after MI. Augmented myocardial angiogenesis coupled with a more functional myocardial capillary network may facilitate revascularization and therefore be responsible for preservation of infarcted myocardium.


Physiological Reports | 2013

Multimodal imaging reveals a role for Akt1 in fetal cardiac development.

Katrien Vandoorne; Moriel Vandsburger; Karen Weisinger; Vlad Brumfeld; Brian A. Hemmings; Alon Harmelin; Michal Neeman

Even though congenital heart disease is the most prevalent malformation, little is known about how mutations affect cardiovascular function during development. Akt1 is a crucial intracellular signaling molecule, affecting cell survival, proliferation, and metabolism. The aim of this study was to determine the role of Akt1 on prenatal cardiac development. In utero echocardiography was performed in fetal wild‐type, heterozygous, and Akt1‐deficient mice. The same fetal hearts were imaged using ex vivo micro‐computed tomography (μCT) and histology. Neonatal hearts were imaged by in vivo magnetic resonance imaging. Additional ex vivo neonatal hearts were analyzed using histology and real‐time PCR of all three groups. In utero echocardiography revealed abnormal blood flow patterns at the mitral valve and reduced contractile function of Akt1 null fetuses, while ex vivo μCT and histology unraveled structural alterations such as dilated cardiomyopathy and ventricular septum defects in these fetuses. Further histological analysis showed reduced myocardial capillaries and coronary vessels in Akt1 null fetuses. At neonatal age, Akt1‐deficient mice exhibited reduced survival with reduced endothelial cell density in the myocardium and attenuated cardiac expression of vascular endothelial growth factor A and collagen Iα1. To conclude, this study revealed a central role of Akt1 in fetal cardiac function and myocardial angiogenesis inducing fetal cardiomyopathy and reduced neonatal survival. This study links a specific physiological phenotype with a defined genotype, namely Akt1 deficiency, in an attempt to pinpoint intrinsic causes of fetal cardiomyopathies.

Collaboration


Dive into the Moriel Vandsburger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Neeman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrien Vandoorne

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge