Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moritz F. Lehmann is active.

Publication


Featured researches published by Moritz F. Lehmann.


Geochimica et Cosmochimica Acta | 2002

Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis

Moritz F. Lehmann; Stefano M. Bernasconi; Alberto Barbieri; Judith A. McKenzie

Abstract The carbon and nitrogen isotope composition of organic matter has been widely used to trace biogeochemical processes in marine and lacustrine environments. In order to reconstruct past environmental changes from sedimentary organic matter, it is crucial to consider potential alteration of the primary isotopic signal by bacterial degradation in the water column and during early diagenesis in the sediments. In a series of oxic and anoxic incubation experiments, we examined the fate of organic matter and the alteration of its carbon and nitrogen isotopic composition during microbial degradation. The decomposition rates determined with a double-exponential decay model show that the more reactive fraction of organic matter degrades at similar rates under oxic and anoxic conditions. However, under oxic conditions the proportion of organic matter resistent to degradation is much lower than under anoxic conditions. Within three months of incubation the δ13C of bulk organic matter decreased by 1.6‰ with respect to the initial value. The depletion can be attributed to the selective preservation of 13C-depleted organic compounds. During anoxic decay, the δ15N values continuously decreased to about 3‰ below the initial value. The decrease probably results from bacterial growth adding 15N-depleted biomass to the residual material. In the oxic experiment, δ15N values increased by more then 3‰ before decreasing to a value indistinguishable from the initial isotopic composition. The dissimilarity between oxic and anoxic conditions may be attributed to differences in the type, timing and degree of microbial activity and preferential degradation. In agreement with the anoxic incubation experiments, sediments from eutrophic Lake Lugano are, on average, depleted in 13C (−1.5‰) and 15N (−1.2‰) with respect to sinking particulate organic matter collected during a long-term sediment trap study.


Geochimica et Cosmochimica Acta | 2003

Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone

Moritz F. Lehmann; Peter Reichert; Stefano M. Bernasconi; Alberto Barbieri; Judith A. McKenzie

The stable isotope composition ( 15 N and 18 O) of nitrate was measured during Summer 1999 in the anaerobic hypolimnion of eutrophic Lake Lugano (Switzerland). Denitrification was demonstrated by a progressive nitrate depletion coupled to increasing 15 N and 18 O values for residual nitrate. Maximum 15 N and 18 O values amounted to 27.2 and 15.7‰, respectively. 15 N and 18 O enrichment factors for denitrification () were estimated using a closed-system model and a dynamic diffusion-reaction model. Using the Rayleigh equation (closed-system approach), we obtained values of 11.2 and 6.6‰ for nitrogen and oxygen, respectively. The average values derived using the diffusion-reaction model were determined to be 20.7 3.8 for nitrogen and 11.0 1.7 for oxygen. Both N and O isotope fractionation appeared to be lower when denitrification rates where high, possibly in association with high organic carbon availability. In addition, variations in the isotope effects may be attributed to the variable importance of sedimentary denitrification having only a small isotope effect on the water column. The combined measurement of N and O isotope ratios in nitrate revealed that coupled nitrification-denitrification in the open-water was of minor importance. This is the first study of nitrogen and oxygen isotope effects associated with microbial denitri- fication in a natural lake. Moreover, this study confirms the high potential of 18 O of nitrate as a valuable biogeochemical tracer in aquatic systems, complementing nitrate 15 N. Copyright


Plant Physiology | 2012

Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade

Florian Walder; Helge Niemann; Mathimaran Natarajan; Moritz F. Lehmann; Thomas Boller; Andres Wiemken

Plants commonly live in a symbiotic association with arbuscular mycorrhizal fungi (AMF). They invest photosynthetic products to feed their fungal partners, which, in return, provide mineral nutrients foraged in the soil by their intricate hyphal networks. Intriguingly, AMF can link neighboring plants, forming common mycorrhizal networks (CMNs). What are the terms of trade in such CMNs between plants and their shared fungal partners? To address this question, we set up microcosms containing a pair of test plants, interlinked by a CMN of Glomus intraradices or Glomus mosseae. The plants were flax (Linum usitatissimum; a C3 plant) and sorghum (Sorghum bicolor; a C4 plant), which display distinctly different 13C/12C isotope compositions. This allowed us to differentially assess the carbon investment of the two plants into the CMN through stable isotope tracing. In parallel, we determined the plants’ “return of investment” (i.e. the acquisition of nutrients via CMN) using 15N and 33P as tracers. Depending on the AMF species, we found a strong asymmetry in the terms of trade: flax invested little carbon but gained up to 94% of the nitrogen and phosphorus provided by the CMN, which highly facilitated growth, whereas the neighboring sorghum invested massive amounts of carbon with little return but was barely affected in growth. Overall biomass production in the mixed culture surpassed the mean of the two monocultures. Thus, CMNs may contribute to interplant facilitation and the productivity boosts often found with intercropping compared with conventional monocropping.


Paleoceanography | 2012

A review of nitrogen isotopic alteration in marine sediments

Rebecca S. Robinson; Markus Kienast; Ana Luiza Spadano Albuquerque; Mark A. Altabet; Sergio Contreras; Ricardo De Pol Holz; Nathalie Dubois; Roger Francois; Eric D. Galbraith; Ting-Chang Hsu; T. S. Ivanochko; Samuel L. Jaccard; Shuh-Ji Kao; Thorsten Kiefer; Stephanie S. Kienast; Moritz F. Lehmann; Philippe Martinez; Matthew D. McCarthy; Jürgen Möbius; Tom F. Pedersen; Tracy M. Quan; Evgeniya Ryabenko; Andreas Schmittner; Ralph R. Schneider; Aya Schneider-Mor; Masahito Shigemitsu; Daniel J. Sinclair; Christopher J. Somes; Anja S Studer; Robert C. Thunell

Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A >100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle.


Global Biogeochemical Cycles | 2010

Simulating the global distribution of nitrogen isotopes in the ocean

Christopher J. Somes; Andreas Schmittner; Eric D. Galbraith; Moritz F. Lehmann; Mark A. Altabet; Joseph P. Montoya; Ricardo M. Letelier; Alan C. Mix; Annie Bourbonnais; Michael Eby

9 isotopes, 14 N and 15 N, in the nitrate (NO3 ), phytoplankton, zooplankton, and detritus 10 variables of the marine ecosystem model. The isotope effects of algal NO3 uptake, 11 nitrogen fixation, water column denitrification, and zooplankton excretion are considered 12 as well as the removal of NO3 by sedimentary denitrification. A global database of 13 d 15 NO3 observations is compiled from previous studies and compared to the model 14 results on a regional basis where sufficient observations exist. The model is able to 15 qualitatively and quantitatively reproduce many of the observed patterns such as high 16 subsurface values in water column denitrification zones and the meridional and vertical 17 gradients in the Southern Ocean. The observed pronounced subsurface minimum in the 18 Atlantic is underestimated by the model presumably owing to too little simulated 19 nitrogen fixation there. Sensitivity experiments reveal that algal NO3 uptake, nitrogen 20 fixation, and water column denitrification have the strongest effects on the simulated 21 distribution of nitrogen isotopes, whereas the effect from zooplankton excretion is 22 weaker. Both water column and sedimentary denitrification also have important indirect 23 effects on the nitrogen isotope distribution by reducing the fixed nitrogen inventory, 24 which creates an ecological niche for nitrogen fixers and, thus, stimulates additional N2 25 fixation in the model. Important model deficiencies are identified, and strategies for 26 future improvement and possibilities for model application are outlined.


PLOS ONE | 2014

The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements

Richard Dabundo; Moritz F. Lehmann; Lija Treibergs; Craig Tobias; Mark A. Altabet; Pia H. Moisander; Julie Granger

We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L−1 d−1, to 530 nmoles N L−1 d−1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2 gas must be ensured prior to use in future N2 fixation rate determinations.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals

Owen A. Sherwood; Moritz F. Lehmann; Carsten J. Schubert; David B. Scott; Matthew D. McCarthy

Despite the importance of the nitrogen (N) cycle on marine productivity, little is known about variability in N sources and cycling in the ocean in relation to natural and anthropogenic climate change. Beyond the last few decades of scientific observation, knowledge depends largely on proxy records derived from nitrogen stable isotopes (δ15N) preserved in sediments and other bioarchives. Traditional bulk δ15N measurements, however, represent the combined influence of N source and subsequent trophic transfers, often confounding environmental interpretation. Recently, compound-specific analysis of individual amino acids (δ15N-AA) has been shown as a means to deconvolve trophic level versus N source effects on the δ15N variability of bulk organic matter. Here, we demonstrate the first use of δ15N-AA in a paleoceanographic study, through analysis of annually secreted growth rings preserved in the organic endoskeletons of deep-sea gorgonian corals. In the Northwest Atlantic off Nova Scotia, coral δ15N is correlated with increasing presence of subtropical versus subpolar slope waters over the twentieth century. By using the new δ15N-AA approach to control for variable trophic processing, we are able to interpret coral bulk δ15N values as a proxy for nitrate source and, hence, slope water source partitioning. We conclude that the persistence of the warm, nutrient-rich regime since the early 1970s is largely unique in the context of the last approximately 1,800 yr. This evidence suggests that nutrient variability in this region is coordinated with recent changes in global climate and underscores the broad potential of δ15N-AA for paleoceanographic studies of the marine N cycle.


Environmental Science & Technology | 2013

Isotope Signatures of N2O in a Mixed Microbial Population System: Constraints on N2O Producing Pathways in Wastewater Treatment

Pascal Wunderlin; Moritz F. Lehmann; Hansruedi Siegrist; Béla Tuzson; Adriano Joss; Lukas Emmenegger; Joachim Mohn

We present measurements of site preference (SP) and bulk (15)N/(14)N ratios (δ(15)N(bulk)(N2O)) of nitrous oxide (N(2)O) by quantum cascade laser absorption spectroscopy (QCLAS) as a powerful tool to investigate N(2)O production pathways in biological wastewater treatment. QCLAS enables high-precision N(2)O isotopomer analysis in real time. This allowed us to trace short-term fluctuations in SP and δ(15)N(bulk)(N2O) and, hence, microbial transformation pathways during individual batch experiments with activated sludge from a pilot-scale facility treating municipal wastewater. On the basis of previous work with microbial pure cultures, we demonstrate that N(2)O emitted during ammonia (NH(4)(+)) oxidation with a SP of -5.8 to 5.6 ‰ derives mostly from nitrite (NO(2)(-)) reduction (e.g., nitrifier denitrification), with a minor contribution from hydroxylamine (NH(2)OH) oxidation at the beginning of the experiments. SP of N(2)O produced under anoxic conditions was always positive (1.2 to 26.1 ‰), and SP values at the high end of this spectrum (24.9 to 26.1 ‰) are indicative of N(2)O reductase activity. The measured δ(15)N(bulk)(N2O) at the initiation of the NH(4)(+) oxidation experiments ranged between -42.3 and -57.6 ‰ (corresponding to a nitrogen isotope effect Δδ(15)N = δ(15)N(substrate) - δ(15)N(bulk)(N2O) of 43.5 to 58.8 ‰), which is considerably higher than under denitrifying conditions (δ(15)N(bulk)(N2O) 2.4 to -17 ‰; Δδ(15)N = 0.1 to 19.5 ‰). During the course of all NH(4)(+) oxidation and nitrate (NO(3)(-)) reduction experiments, δ(15)N(bulk)(N2O) increased significantly, indicating net (15)N enrichment in the dissolved inorganic nitrogen substrates (NH(4)(+), NO(3)(-)) and transfer into the N(2)O pool. The decrease in δ(15)N(bulk)(N2O) during NO(2)(-) and NH(2)OH oxidation experiments is best explained by inverse fractionation during the oxidation of NO(2)(-) to NO(3)(-).


Proceedings of the National Academy of Sciences of the United States of America | 2013

Nitrogen isotope effects induced by anammox bacteria.

Benjamin Brunner; Sergio Contreras; Moritz F. Lehmann; Olga Matantseva; Mark Rollog; Tim Kalvelage; G. Klockgether; Gaute Lavik; Mike S. M. Jetten; Boran Kartal; Marcel M. M. Kuypers

Significance Nitrogen is essential for all organisms and limits primary production in the ocean. It is mainly lost from low-oxygen environments by the activity of microorganisms that convert fixed nitrogen to N2 gas. The isotopic composition of nitrogen species can be used to assess nitrogen sinks in the environment, but its use in biogeochemical studies can be fully exploited only if the isotope discrimination that is associated with the respective nitrogen-converting pathways is known. This study reveals the wide range of nitrogen isotope effects of anaerobic oxidation of ammonium (anammox), a major player in marine fixed nitrogen loss, reconciling experimental data with nitrogen isotope signatures observed in the ocean. Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones.


Molecular Ecology | 2011

Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation

Sereina Rutschmann; Michael Matschiner; Malte Damerau; Moritz Muschick; Moritz F. Lehmann; Reinhold Hanel; Walter Salzburger

Antarctic notothenioid fishes represent a rare example of a marine species flock. They evolved special adaptations to the extreme environment of the Southern Ocean including antifreeze glycoproteins. Although lacking a swim bladder, notothenioids have diversified from their benthic ancestor into a wide array of water column niches, such as epibenthic, semipelagic, cryopelagic and pelagic habitats. Applying stable carbon (C) and nitrogen (N) isotope analyses to gain information on feeding ecology and foraging habitats, we tested whether ecological diversification along the benthic–pelagic axis followed a single directional trend in notothenioids, or whether it evolved independently in several lineages. Population samples of 25 different notothenioid species were collected around the Antarctic Peninsula, the South Orkneys and the South Sandwich Islands. The C and N stable isotope signatures span a broad range (mean δ13C and δ15N values between −25.4‰ and −21.9‰ and between 8.5‰ and 13.8‰, respectively), and pairwise niche overlap between four notothenioid families was highly significant. Analysis of isotopic disparity‐through‐time on the basis of Bayesian inference and maximum‐likelihood phylogenies, performed on a concatenated mitochondrial (cyt b) and nuclear gene (myh6, Ptr and tbr1) data set (3148 bp), showed that ecological diversification into overlapping feeding niches has occurred multiple times in parallel in different notothenioid families. This convergent diversification in habitat and trophic ecology is a sign of interspecific competition and characteristic for adaptive radiations.

Collaboration


Dive into the Moritz F. Lehmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten J. Schubert

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Treude

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annie Bourbonnais

University of Massachusetts Dartmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingeborg Bussmann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge