Moriya Tsuji
Aaron Diamond AIDS Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Moriya Tsuji.
Nature | 2005
Yuki Kinjo; Douglass Wu; Gisen Kim; Guo-Wen Xing; Michael A. Poles; David D. Ho; Moriya Tsuji; Kazuyoshi Kawahara; Chi-Huey Wong; Mitchell Kronenberg
Natural killer T (NKT) cells constitute a highly conserved T lymphocyte subpopulation that has the potential to regulate many types of immune responses through the rapid secretion of cytokines. NKT cells recognize glycolipids presented by CD1d, a class I-like antigen-presenting molecule. They have an invariant T-cell antigen receptor (TCR) α-chain, but whether this invariant TCR recognizes microbial antigens is still controversial. Here we show that most mouse and human NKT cells recognize glycosphingolipids from Sphingomonas, Gram-negative bacteria that do not contain lipopolysaccharide. NKT cells are activated in vivo after exposure to these bacterial antigens or bacteria, and mice that lack NKT cells have a marked defect in the clearance of Sphingomonas from the liver. These data suggest that NKT cells are T lymphocytes that provide an innate-type immune response to certain microorganisms through recognition by their antigen receptor, and that they might be useful in providing protection from bacteria that cannot be detected by pattern recognition receptors such as Toll-like receptor 4.
Nature Immunology | 2006
Yuki Kinjo; Emmanuel Tupin; Douglass Wu; Masakazu Fujio; Raquel Garcia-Navarro; Mohammed Rafii El Idrissi Benhnia; Dirk M. Zajonc; Gil Ben-Menachem; Gary D. Ainge; Gavin F. Painter; Archana Khurana; Kasper Hoebe; Samuel M. Behar; Bruce Beutler; Ian A. Wilson; Moriya Tsuji; Timothy J. Sellati; Chi-Huey Wong; Mitchell Kronenberg
Natural killer T (NKT) cells recognize glycosphingolipids presented by CD1d molecules and have been linked to defense against microbial infections. Previously defined foreign glycosphingolipids recognized by NKT cells are uniquely found in nonpathogenic sphingomonas bacteria. Here we show that mouse and human NKT cells also recognized glycolipids, specifically a diacylglycerol, from Borrelia burgdorferi, which causes Lyme disease. The B. burgdorferi–derived, glycolipid-induced NKT cell proliferation and cytokine production and the antigenic potency of this glycolipid was dependent on acyl chain length and saturation. These data indicate that NKT cells recognize categories of glycolipids beyond those in sphingomonas and suggest that NKT cell responses driven by T cell receptor–mediated glycolipid recognition may provide protection against diverse pathogens.
Journal of Experimental Medicine | 2003
John Schmieg; Guangli Yang; Richard W. Franck; Moriya Tsuji
α-Galactosylceramide (α-GalCer) is a glycolipid that stimulates natural killer T cells to produce both T helper (Th) 1 and Th2 cytokines. This property enables α-GalCer to ameliorate a wide variety of infectious, neoplastic, and autoimmune diseases; however, its effectiveness against any one disease is limited by the opposing activities of the induced Th1 and Th2 cytokines. Here, we report that a synthetic C-glycoside analogue of α-GalCer, α-C-galactosylceramide (α-C-GalCer), acts as natural killer T cell ligand in vivo, and stimulates an enhanced Th1-type response in mice. In two disease models requiring Th1-type responses for control, namely malaria and melanoma metastases, α-C-GalCer exhibited a 1,000-fold more potent antimalaria activity and a 100-fold more potent antimetastatic activity than α-GalCer. Moreover, α-C-GalCer consistently stimulated prolonged production of the Th1 cytokines interferon-γ and interleukin (IL)-12, and decreased production of the Th2 cytokine IL-4 compared with α-GalCer. Finally, α-C-GalCers enhanced therapeutic activity required the presence of IL-12, which was needed to stimulate natural killer cells for optimal interferon-γ production, but did not affect IL-4. Overall, our results suggest that α-C-GalCer may one day be an excellent therapeutic option for diseases resolved by Th1-type responses.
Journal of Experimental Medicine | 2002
Gloria Gonzalez-Aseguinolaza; Luc Van Kaer; Cornelia C. Bergmann; James M. Wilson; John Schmieg; Mitchell Kronenberg; Toshinori Nakayama; Masaru Taniguchi; Yasuhiko Koezuka; Moriya Tsuji
The important role played by CD8+ T lymphocytes in the control of parasitic and viral infections, as well as tumor development, has raised the need for the development of adjuvants capable of enhancing cell-mediated immunity. It is well established that protective immunity against liver stages of malaria parasites is primarily mediated by CD8+ T cells in mice. Activation of natural killer T (NKT) cells by the glycolipid ligand, α-galactosylceramide (α-GalCer), causes bystander activation of NK, B, CD4+, and CD8+ T cells. Our study shows that coadministration of α-GalCer with suboptimal doses of irradiated sporozoites or recombinant viruses expressing a malaria antigen greatly enhances the level of protective anti-malaria immunity in mice. We also show that coadministration of α-GalCer with various different immunogens strongly enhances antigen-specific CD8+ T cell responses, and to a lesser degree, Th1-type responses. The adjuvant effects of α-GalCer require CD1d molecules, Vα14 NKT cells, and interferon γ. As α-GalCer stimulates both human and murine NKT cells, these findings should contribute to the design of more effective vaccines against malaria and other intracellular pathogens, as well as tumors.
Nature Immunology | 2011
Yuki Kinjo; Petr A. Illarionov; José Luis Vela; Bo Pei; Enrico Girardi; Xiangming Li; Yali Li; Masakazu Imamura; Yukihiro Kaneko; Akiko Okawara; Yoshitsugu Miyazaki; Anaximandro Gómez-Velasco; Paul Rogers; Samira Dahesh; Satoshi Uchiyama; Archana Khurana; Kazuyoshi Kawahara; Hasan Yesilkaya; Peter W. Andrew; Chi-Huey Wong; Kazuyoshi Kawakami; Victor Nizet; Gurdyal S. Besra; Moriya Tsuji; Dirk M. Zajonc; Mitchell Kronenberg
Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.
International Journal for Parasitology | 2001
Oscar Bruña-Romero; Julius C R Hafalla; Gloria Gonzalez-Aseguinolaza; Gen-ichiro Sano; Moriya Tsuji; Fidel Zavala
We describe a highly sensitive real-time PCR to detect and measure the development of the liver-stages of malaria parasites in mice infected with sporozoites ranging in number from 25 to more than 164,000, using the same reaction conditions. Furthermore, this assay detects and measures parasite loads in the livers of mice exposed to the bite of a single malaria-infected Anopheles mosquito. This unique method should greatly facilitate studies aimed at evaluating very precisely the efficacy of anti-malarial experimental drug treatments and vaccination regimens in conditions of infection resembling those found in the field.
PubMed | 2011
Yuki Kinjo; Petr A. Illarionov; José Luis Vela; Bo Pei; Enrico Girardi; Xiangming Li; Yali Li; Masakazu Imamura; Yukihiro Kaneko; Akiko Okawara; Yoshitsugu Miyazaki; Anaximandro Gómez-Velasco; Paul Rogers; Samira Dahesh; Satoshi Uchiyama; Archana Khurana; Kazuyoshi Kawahara; Hasan Yesilkaya; Peter W. Andrew; Chi-Huey Wong; Kazuyoshi Kawakami; Nizet; Gurdyal S. Besra; Moriya Tsuji; Dirk M. Zajonc; Mitchell Kronenberg
Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.
Nature Medicine | 2011
Fikri Y. Avci; Xiangming Li; Moriya Tsuji; Dennis L. Kasper
Although glycoconjugate vaccines have provided enormous health benefits globally, they have been less successful in significant high-risk populations. Exploring novel approaches to the enhancement of glycoconjugate effectiveness, we investigated molecular and cellular mechanisms governing the immune response to a prototypical glycoconjugate vaccine. In antigen-presenting cells, a carbohydrate epitope is generated upon endolysosomal processing of group B streptococcal type III polysaccharide coupled to a carrier protein. In conjunction with a carrier protein-derived peptide, this carbohydrate epitope binds to major histocompatibility class II (MHCII) and stimulates carbohydrate-specific CD4+ T-cell clones to produce interleukins 2 and 4—cytokines essential for providing T-cell help to antibody-producing B cells. An archetypical glycoconjugate vaccine constructed to maximize the presentation of carbohydrate epitopes recognized by T cells is 50–100 times more potent and significantly more protective in an animal model of infection than is a currently used vaccine construct.Glycoconjugate vaccines have provided enormous health benefits globally, but they have been less successful in some populations at high risk for developing disease. To identify new approaches to enhancing glycoconjugate effectiveness, we investigated molecular and cellular mechanisms governing the immune response to a prototypical glycoconjugate vaccine. We found that in antigen-presenting cells a carbohydrate epitope is generated upon endolysosomal processing of group B streptococcal type III polysaccharide coupled to a carrier protein. In conjunction with a carrier protein–derived peptide, this carbohydrate epitope binds major histocompatibility class II (MHCII) and stimulates carbohydrate-specific CD4+ T cell clones to produce interleukins 2 and 4—cytokines essential for providing T cell help to antibody-producing B cells. An archetypical glycoconjugate vaccine that we constructed to maximize the presentation of carbohydrate-specific T cell epitopes is 50–100 times more potent and substantially more protective in a neonatal mouse model of group B Streptococcus infection than a vaccine constructed by methods currently used by the vaccine industry. Our discovery of how glycoconjugates are processed resulting in presentation of carbohydrate epitopes that stimulate CD4+ T cells has key implications for glycoconjugate vaccine design that could result in greatly enhanced vaccine efficacy.
Parasitology Research | 1994
Moriya Tsuji; Denise Mattei; Ruth S. Nussenzweig; Daniel Eichinger; Fidel Zavala
Three monoclonal antibodies generated by immunization of mice withPlasmodium berghei-infected red blood cells were found to react with the 75-kDa heat-shock protein (HSP70) present in liver stages and crythrocytic forms of the parasites. These antibodies were shown to react with a recombinant protein encoding the carboxyl terminal half of PfHSP70 (aa 365–681). Differently from earlier results, we clearly demonstrated that HSP70 was also expressed in the sporozoite stage, using these monoclonal antibodies in an immunofluorescence and Western immunoblot assay. These monoclonal antibodies react not only with sporozoites ofP. berghei, the parasites originally used for the immunization, but also with sporozoites of several other rodent and human plasmodial species. Passive transfer of these monoclonal antibodies into naive mice, simultaneously injected with sporozoites, failed to neutralize the infectivity ofP. berghei sporozoites and to inhibit the development of liver stages ofP. yoelii.
Journal of Immunology | 2000
Alberto Molano; Se Ho Park; Ya-Hui Chiu; Sandy Nosseir; Albert Bendelac; Moriya Tsuji
Biochemical analysis has suggested that self GPI anchors are the main natural ligand associated with mouse CD1d molecules. A recent study reported that Vα14+ NK T cells responded to self as well as foreign (parasite-derived) GPIs in a CD1d-dependent manner. It further reported that the IgG response to the Plasmodium berghei malarial circumsporozoite (CS) protein was severely impaired in CD1d-deficient mice, leading to a model whereby NK T cells, upon recognition of CD1d molecules presenting the CS-derived GPI anchor, provide help for B cells secreting anti-CS Abs. We tested this model by comparing the anti-CS Ab responses of wild-type, CD1d-deficient, and MHC class II-deficient mice. We found that the IgG response to the CS protein was solely MHC class II-dependent. Furthermore, by measuring the response of a broad panel of CD1d-autoreactive T cells to GPI-deficient CD1d-expressing cells, we found that GPIs were not required for autoreactive responses.