Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morshed A. Chowdhury is active.

Publication


Featured researches published by Morshed A. Chowdhury.


Journal of Medicinal Chemistry | 2009

Synthesis of Celecoxib Analogues Possessing a N-Difluoromethyl-1,2-dihydropyrid-2-one 5-Lipoxygenase Pharmacophore: Biological Evaluation as Dual Inhibitors of Cyclooxygenases and 5-Lipoxygenase with Anti-Inflammatory Activity

Morshed A. Chowdhury; Khaled R. A. Abdellatif; Ying Dong; Dipankar Das; Mavanur R. Suresh; Edward E. Knaus

A novel class of 1-(4-methanesulfonylphenyl and 4-aminosulfonylphenyl)-5-[4-(1-difluoromethyl-1,2-dihydropyrid-2-one)]-3-trifluoromethyl-1H-pyrazole hybrid cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LOX) inhibitory anti-inflammatory agents was designed. Replacement of the tolyl ring present in celecoxib by the N-difluoromethyl-1,2-dihydropyrid-2-one moiety provided compounds showing dual selective COX-2/5-LOX inhibitory activities. 1-(4-Aminosulfonylphenyl)-5-[4-(1-difluoromethyl-1,2-dihydropyrid-2-one)]-3-trifluoromethyl-1H-pyrazole exhibited good anti-inflammatory (AI) activity (ED(50) = 27.7 mg/kg po) that compares favorably with the reference drugs celecoxib (ED(50) = 10.8 mg/kg po) and ibuprofen (ED(50) = 67.4 mg/kg po). The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel 5-LOX pharmacophore for the design of cyclic hydroxamic mimetics for exploitation in the development of COX-2/5-LOX inhibitory AI drugs.


Bioorganic & Medicinal Chemistry Letters | 2010

Celecoxib analogs possessing a N-(4-nitrooxybutyl)piperidin-4-yl or N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridin-4-yl nitric oxide donor moiety: Synthesis, biological evaluation and nitric oxide release studies

Morshed A. Chowdhury; Khaled R.A. Abdellatif; Ying Dong; Gang Yu; Zhangjian Huang; Moshfiqur Rahman; Dipankar Das; Carlos A. Velázquez; Mavanur R. Suresh; Edward E. Knaus

A new group of hybrid nitric oxide (NO) releasing anti-inflammatory (AI) coxib prodrugs (NO-coxibs) wherein the para-tolyl moiety present in celecoxib was replaced by a N-(4-nitrooxybutyl)piperidyl 15a-b, or N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridyl 17a-b, NO-donor moiety was synthesized. All compounds released a low amount of NO upon incubation with phosphate buffered saline (PBS) at pH 7.4 (2.4-5.8% range). In comparison, the percentage NO released was higher (3.1-8.4% range) when these nitrate prodrugs were incubated in the presence of L-cysteine. In vitro COX-1/COX-2 isozyme inhibition studies showed this group of compounds are moderately more potent, and hence selective, inhibitors of the COX-2 relative to the COX-1 enzyme. AI structure-activity relationship data acquired showed that compounds having a MeSO2 COX-2 pharmacophore exhibited superior AI activity compared to analogs having a H2NSO2 substituent. Compounds having a MeSO2 COX-2 pharmacophore in conjunction with a N-(4-nitrooxybutyl)piperidyl (ED50=132.4 mg/kg po), or a N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridyl (ED50=118.4 mg/kg po), moiety exhibited an AI potency profile that is similar to aspirin (ED50=128.7 mg/kg po) but lower than ibuprofen (ED50=67.4 mg/kg po).


Journal of Medicinal Chemistry | 2011

Ethanesulfohydroxamic acid ester prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs): synthesis, nitric oxide and nitroxyl release, cyclooxygenase inhibition, anti-inflammatory, and ulcerogenicity index studies.

Zhangjian Huang; Carlos A. Velázquez; Khaled R. A. Abdellatif; Morshed A. Chowdhury; Julie A. Reisz; Jenna F. DuMond; S. Bruce King; Edward E. Knaus

The carboxylic acid group of the anti-inflammatory (AI) drugs indo-methacin, (S)-naproxen and ibuprofen was covalently linked via a two-carbon ethyl spacer to a sulfohydroxamic acid moiety (CH(2)CH(2)SO(2)NHOH) to furnish a group of hybrid ester prodrugs that release nitric oxide (NO) and nitroxyl (HNO). Biological data acquired for this hitherto unknown class of ethanesulfohydroxamic acid ester prodrugs showed (i) all compounds exhibited superior NO, but similar HNO, release properties relative to arylsulfohydroxamic acids, (ii) the (S)-naproxen and ibuprofen prodrug esters are more potent AI agents than their parent NSAID, (iii) the indomethacin prodrug ester, in contrast to indomethacin which is highly ulcerogenic, showed no visible stomach lesions [ulcer index (UI) = 0 for a 80 μmol/kg oral dose] while retaining potent AI activity, and iv) that the indomethacin prodrug ester, unlike indomethacin which is an ulcerogenic selective COX-1 inhibitor, is a selective COX-2 inhibitor (COX-2 selectivity index = 184) devoid of ulcerogenicity that is attributed to its high COX-2 SI and/or ability to release cytoprotective NO.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis of celecoxib analogs that possess a N-hydroxypyrid-2(1H)one 5-lipoxygenase pharmacophore : Biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity

Morshed A. Chowdhury; Khaled R.A. Abdellatif; Ying Dong; Dipankar Das; Mavanur R. Suresh; Edward E. Knaus

A hitherto unknown class of celecoxib analogs was designed for evaluation as dual inhibitors of the 5-lipoxygenase/cyclooxygenase-2 (5-LOX/COX-2) enzymes. These compounds possess a SO(2)Me (11a), or SO(2)NH(2) (11b) COX-2 pharmacophore at the para-position of the N(1)-phenyl ring in conjunction with a 5-LOX N-hydroxypyrid-2(1H)one iron-chelating moiety in place of the celecoxib C-5 tolyl group. The title compounds 11a-b are weak inhibitors of the COX-1 and COX-2 isozymes (IC(50)=7.5-13.2 microM range). In contrast, the SO(2)Me (11a, IC(50)=0.35 microM), and SO(2)NH(2) (11b, IC(50)=4.9 microM), compounds are potent inhibitors of the 5-LOX enzyme comparing favorably with the reference drug caffeic acid (5-LOX IC(50)=3.47 microM). The SO(2)Me (11a, ED(50)=66.9 mg/kg po), and SO(2)NH(2) (11b, ED(50)=99.8 mg/kg po) compounds exhibited excellent oral anti-inflammatory (AI) activities being more potent than the non-selective COX-1/COX-2 inhibitor drug aspirin (ED(50)=128.9 mg/kg po) and less potent than the selective COX-2 inhibitor celecoxib (ED(50)=10.8 mg/kg po). The N-hydroxypyridin-2(1H)one moiety constitutes a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.


Bioorganic & Medicinal Chemistry Letters | 2009

Dinitroglyceryl and diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of aspirin, indomethacin and ibuprofen: Synthesis, biological evaluation and nitric oxide release studies

Khaled R.A. Abdellatif; Morshed A. Chowdhury; Ying Dong; Dipankar Das; Gang Yu; Carlos A. Velázquez; Mavanur R. Suresh; Edward E. Knaus

A new group of hybrid nitric oxide (NO) releasing anti-inflammatory (AI) ester prodrugs (NONO-NSAIDs) wherein a 1,3-dinitrooxy-2-propyl (12a-c), or O(2)-acetoxymethyl-1-[2-(methyl)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (14a-c), NO-donor moiety is directly attached to the carboxylic acid group of aspirin, indomethacin or ibuprofen were synthesized. NO release from the dinitrooxypropyl, or diazen-1-ium-1,2-diolate, ester prodrugs was increased substantially upon incubation in the presence of l-cysteine (12a-c) or rat serum (14a-c). The ester prodrugs (12a-c, 14a-c), which did not inhibit the COX-1 isozyme, exhibited modest inhibitory activity against the COX-2 isozyme. The NONO-NSAIDs 12a-c and 14a-c exhibited in vivo AI activity that was similar to that exhibited by the parent drug aspirin, indomethacin or ibuprofen when the same oral dose (micromol/kg) was administered. These similarities in oral potency profiles suggest these NONO-NSAIDs act as classical prodrugs that require metabolic activation by esterase-mediated hydrolysis. Hybrid NO-donor/anti-inflammatory prodrugs of this type (NONO-NSAIDs) offer a potential drug design concept targeted toward the development of anti-inflammatory drugs with reduced adverse gastrointestinal effects.


Bioorganic & Medicinal Chemistry | 2008

Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole and its methanesulfonyl analog: synthesis, biological evaluation and nitric oxide release studies.

Khaled R.A. Abdellatif; Morshed A. Chowdhury; Ying Dong; Carlos A. Velázquez; Dipankar Das; Mavanur R. Suresh; Edward E. Knaus

A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs 12a-b) wherein an O(2)-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11, O(2)-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the bromomethyl group of 5-(4-bromomethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (9a), and its methanesulfonyl analog (9b), were synthesized. The diazen-1-ium-1,2-diolate compounds 12a-b released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (6.1-8.2% range). In comparison, the percentage NO released was significantly higher (76-77% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs 12a-b were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (10a), and its methanesulfonyl analog (10b), would be released from the parent NONO-coxib 12a or 12b upon in vivo cleavage by non-specific serum esterases. The hydroxymethyl compounds 10a-b were weak inhibitors of the cyclooxygenase-1 (COX-1) and COX-2 isozymes (IC(50)=3.7-10.5 microM range). However, the hydroxymethyl compounds 10a-b and the parent NONO-coxibs 12a-b exhibited good AI activities (ED(50)=76.7-111.6 micromol/kg po range) that were greater than that exhibited by the reference drugs aspirin (ED(50)=710 micromol/kg po) and ibuprofen (ED(50)=327 micromol/kg po), but less than that of celecoxib (ED(50)=30.9mumol/kg po). These studies indicate hybrid ester AI/NO-donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.


Bioorganic & Medicinal Chemistry | 2008

Synthesis of new 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines: A search for novel nitric oxide donor anti-inflammatory agents

Morshed A. Chowdhury; Khaled R.A. Abdellatif; Ying Dong; Edward E. Knaus

A group of 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines possessing a variety of substituents (Me, CO2Et, H, N=O) attached to the 1,2,3,6-tetrahydropyridyl N(1)-nitrogen atom were synthesized and evaluated as anti-inflammatory agents. Structure-activity relationship data showed that the N-methyl-1,2,3,6-tetrahydropyridyl moiety is a suitable bioisosteric replacement for the tolyl moiety in celecoxib. The most potent compound 4-[5-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)-3-trifluoromethylpyrazol-1-yl]benzenesulfonamide (ED(50)=61.2 mg/kg po) exhibited an anti-inflammatory activity between that of the reference drugs celecoxib (ED(50)=10.8 mg/kg po) and aspirin (ED(50)=128.7 mg/kg po). The synthesis of model hybrid nitric oxide donor N-diazen-1-ium-1,2-diolate derivatives of 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines requires further investigation since the reaction of 1,2,3,6-tetrahydropyridines with nitric oxide furnished the undesired N-nitroso-1,2,3,6-tetrahydrohydropyridyl product rather than the desired N-diazen-1-ium-1,2-diolate-1,2,3,6-tetrahydropyridyl product.


Journal of Medicinal Chemistry | 2014

Prodrug-Inspired Probes Selective to Cathepsin B over Other Cysteine Cathepsins

Morshed A. Chowdhury; Ignace Adolfo Moya; Shardul Bhilocha; Cody C. McMillan; Brady G. Vigliarolo; Ingeborg Zehbe; Christopher Phenix

Cathepsin B (CTB) is a cysteine protease believed to be an important therapeutic target or biomarker for several diseases including aggressive cancer, arthritis, and parasitic infections. The development of probes capable of assessing CTB activity in cell lysates, living cells, and animal models of disease are needed to understand its role in disease progression. However, discovering probes selective to cathepsin B over other cysteine cathepsins is a significant challenge due to overlap of preferred substrates and binding site homology in this family of proteases. Herein we report the synthesis and detailed evaluation of two prodrug-inspired fluorogenic peptides designed to be efficient and selective substrate-based probes for CTB. Through cell lysate and cell assays, a promising lead candidate was identified that is efficiently processed and has high specificity for CTB over other cysteine cathepsins. This work represents a key step toward the design of rapid release prodrugs or substrate-based molecular imaging probes specific to CTB.


Bioorganic & Medicinal Chemistry | 2008

Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 1-(4-methanesulfonylphenyl)-5-aryl-1H-pyrazol-3-carboxylic acids: Synthesis, nitric oxide release studies and anti-inflammatory activities

Khaled R.A. Abdellatif; Morshed A. Chowdhury; Ying Dong; Edward E. Knaus

A new group of hybrid nitric oxide-releasing anti-inflammatory drugs (NONO-coxibs) wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-c) NO-donor moiety is attached directly to the carboxylic acid group of 1-(4-methanesulfonylphenyl)-5-aryl-1H-pyrazol-3-carboxylic acids were synthesized. The diazen-1-ium-1,2-diolate compounds 11a-c all released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (7.7-9.3% range). In comparison, the percentage of NO released was significantly higher (67.5-73.6% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3-carboxylic acid (9a-c) would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. The 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3-carboxylic acids (9a-c) exhibited AI activities (ID(50)=85.2-104.4 mg/kg po range) between that exhibited by the reference drugs aspirin (ID(50)=128.7 mg/kg po) and celecoxib (ID(50)=10.8 mg/kg po). Hybrid ester anti-inflammatory/NO-donor prodrugs (NONO-coxibs) offers a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and biological evaluation of N-difluoromethyl-1,2-dihydropyrid-2-one acetic acid regioisomers: dual inhibitors of cyclooxygenases and 5-lipoxygenase.

Gang Yu; P.N. Praveen Rao; Morshed A. Chowdhury; Khaled R.A. Abdellatif; Ying Dong; Dipankar Das; Carlos A. Velázquez; Mavanur R. Suresh; Edward E. Knaus

A new group of acetic acid (7a-c, R(1) = H), and propionic acid (7d-f, R(1) = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF(2) substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO(2)NH(2)) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs.

Collaboration


Dive into the Morshed A. Chowdhury's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Dong

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Yu

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Chen

University of Alberta

View shared research outputs
Researchain Logo
Decentralizing Knowledge