Morten Alhede
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Morten Alhede.
Trends in Microbiology | 2013
Thomas Bjarnsholt; Maria Alhede; Morten Alhede; Steffen Robert Eickhardt-Sørensen; Michael Kühl; Peter Østrup Jensen; Niels Høiby
Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms, and we suggest new strategies for improving this discrepancy.
Antimicrobial Agents and Chemotherapy | 2008
Mette E. Skindersoe; Morten Alhede; Richard Kerry Phipps; Liang Yang; Peter Østrup Jensen; Thomas Bovbjerg Rasmussen; Thomas Bjarnsholt; Tim Tolker-Nielsen; Niels Høiby; Michael Givskov
ABSTRACT During infection, Pseudomonas aeruginosa employs bacterial communication (quorum sensing [QS]) to coordinate the expression of tissue-damaging factors. QS-controlled gene expression plays a pivotal role in the virulence of P. aeruginosa, and QS-deficient mutants cause less severe infections in animal infection models. Treatment of cystic fibrosis (CF) patients chronically infected with P. aeruginosa with the macrolide antibiotic azithromycin (AZM) has been demonstrated to improve the clinical outcome. Several studies indicate that AZM may accomplish its beneficial action in CF patients by impeding QS, thereby reducing the pathogenicity of P. aeruginosa. This led us to investigate whether QS inhibition is a common feature of antibiotics. We present the results of a screening of 12 antibiotics for their QS-inhibitory activities using a previously described QS inhibitor selector 1 strain. Three of the antibiotics tested, AZM, ceftazidime (CFT), and ciprofloxacin (CPR), were very active in the assay and were further examined for their effects on QS-regulated virulence factor production in P. aeruginosa. The effects of the three antibiotics administered at subinhibitory concentrations were investigated by use of DNA microarrays. Consistent results from the virulence factor assays, reverse transcription-PCR, and the DNA microarrays support the finding that AZM, CFT, and CPR decrease the expression of a range of QS-regulated virulence factors. The data suggest that the underlying mechanism may be mediated by changes in membrane permeability, thereby influencing the flux of N-3-oxo-dodecanoyl-l-homoserine lactone.
Antimicrobial Agents and Chemotherapy | 2012
Tim Holm Jakobsen; Maria van Gennip; Richard Kerry Phipps; Meenakshi Sundaram Shanmugham; Louise Dahl Christensen; Morten Alhede; Mette Eline Skindersoe; Thomas Bovbjerg Rasmussen; Karlheinz Friedrich; Friedrich Uthe; Peter Østrup Jensen; Kristian Fog Nielsen; Leo Eberl; Thomas Ostenfeld Larsen; David Tanner; Niels Høiby; Thomas Bjarnsholt; Michael Givskov
ABSTRACT In relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria like Pseudomonas aeruginosa to synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P. aeruginosa QS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensive in vitro and in vivo studies, the effect of synthetic ajoene toward P. aeruginosa was elucidated. DNA microarray studies of ajoene-treated P. aeruginosa cultures revealed a concentration-dependent attenuation of a few but central QS-controlled virulence factors, including rhamnolipid. Furthermore, ajoene treatment of in vitro biofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a mouse model of pulmonary infection, a significant clearing of infecting P. aeruginosa was detected in ajoene-treated mice compared to a nontreated control group. This study adds to the list of examples demonstrating the potential of QS-interfering compounds in the treatment of bacterial infections.
Microbiology | 2009
Morten Alhede; Thomas Bjarnsholt; Peter Østrup Jensen; Richard Kerry Phipps; Lars Christophersen; Louise Dahl Christensen; Maria van Gennip; Matt Parsek; Niels Høiby; Thomas Bovbjerg Rasmussen; Michael Givskov
Polymorphonuclear neutrophilic leukocytes (PMNs) play a central role in innate immunity, where they dominate the response to infections, in particular in the cystic fibrosis lung. PMNs are phagocytic cells that produce a wide range of antimicrobial agents aimed at killing invading bacteria. However, the opportunistic pathogen Pseudomonas aeruginosa can evade destruction by PMNs and thus cause persistent infections. In this study, we show that biofilm cells of P. aeruginosa recognize the presence of attracted PMNs and direct this information to their fellow bacteria through the quorum sensing (QS) signalling system. The bacteria respond to the presence of PMNs by upregulating synthesis of a number of QS-controlled virulence determinants including rhamnolipids, all of which are able to cripple and eliminate cells of the host defence. Our in vitro and in vivo analyses support a launch a shield model by which rhamnolipids surround the biofilm bacteria and on contact eliminate incoming PMNs. Our data strengthen the view that cross-kingdom communication plays a key role in P. aeruginosa recognition and evasion of the host defence.
PLOS ONE | 2011
Morten Alhede; Kasper Nørskov Kragh; Klaus Qvortrup; Marie Allesen-Holm; Maria van Gennip; Louise Dahl Christensen; Peter Østrup Jensen; Anne K. Nielsen; Matt Parsek; Daniel J. Wozniak; Søren Molin; Tim Tolker-Nielsen; Niels Høiby; Michael Givskov; Thomas Bjarnsholt
For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance) and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non-aggregated bacterial populations.
Applied and Environmental Microbiology | 2012
Tim Holm Jakobsen; Steinn Kristinn Bragason; Richard Kerry Phipps; Louise Dahl Christensen; Maria van Gennip; Morten Alhede; Mette Eline Skindersoe; Thomas Ostenfeld Larsen; Niels Høiby; Thomas Bjarnsholt; Michael Givskov
ABSTRACT Foods with health-promoting effects beyond nutritional values have been gaining increasing research focus in recent years, although not much has been published on this subject in relation to bacterial infections. With respect to treatment, a novel antimicrobial strategy, which is expected to transcend problems with selective pressures for antibiotic resistance, is to interrupt bacterial communication, also known as quorum sensing (QS), by means of signal antagonists, the so-called QS inhibitors (QSIs). Furthermore, QSI agents offer a potential solution to the deficiencies associated with use of traditional antibiotics to treat infections caused by bacterial biofilms and multidrug-resistant bacteria. Several QSIs of natural origin have been identified, and in this study, several common food products and plants were extracted and screened for QSI activity in an attempt to isolate and characterize previously unknown QSI compounds active against the common opportunistic pathogen Pseudomonas aeruginosa. Several extracts displayed activity, but horseradish exhibited the highest activity. Chromatographic separation led to the isolation of a potent QSI compound that was identified by liquid chromatography-diode array detector-mass spectrometry (LC-DAD-MS) and nuclear magnetic resonance (NMR) spectroscopy as iberin—an isothiocyanate produced by many members of the Brassicaceae family. Real-time PCR (RT-PCR) and DNA microarray studies showed that iberin specifically blocks expression of QS-regulated genes in P. aeruginosa.
The ISME Journal | 2008
Carsten Matz; Ana Maria Moreno; Morten Alhede; Mike Manefield; Alan R. Hauser; Michael Givskov; Staffan Kjelleberg
Bacteria and protozoa coexist in a wide range of biofilm communities of natural, technical and medical importance. Generally, this interaction is characterized by the extensive grazing activity of protozoa on bacterial prey populations. We hypothesized that the close spatial coexistence in biofilms should allow opportunistic pathogenic bacteria to utilize their eukaryote-targeting arsenal to attack and exploit protozoan host cells. Studying cocultures of the environmental pathogen Pseudomonas aeruginosa and the amoeba Acanthamoeba castellanii, we found that P. aeruginosa rapidly colonized and killed biofilm-associated amoebae by a quorum-sensing independent mechanism. Analysis of the amoeba-induced transcriptome indicated the involvement of the P. aeruginosa type III secretion system (T3SS) in this interaction. A comparison of mutants with specific defects in the T3SS demonstrated the use of the secretion apparatus and the effectors ExoU, ExoS and ExoT in the killing process, of which ExoU had the greatest impact. T3SS-mediated virulence towards A. castellanii was found to be controlled by the global regulators RpoN and RpoS and through modulation of cAMP and alginate biosynthesis. Our findings suggest that conserved virulence pathways and specifically the T3SS play a central role in bacteria–protozoa interactions in biofilms and may be instrumental for the environmental persistence and evolution of opportunistic bacterial pathogens.
Advances in Applied Microbiology | 2014
Maria Alhede; Thomas Bjarnsholt; Michael Givskov; Morten Alhede
The opportunistic gram-negative bacterium Pseudomonas aeruginosa is implicated in many chronic infections and is readily isolated from chronic wounds, medical devices, and the lungs of cystic fibrosis patients. P. aeruginosa is believed to persist in the host organism due to its capacity to form biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes (PMNs). In this chapter, the interplay between P. aeruginosa and the PMNs in chronic infections is discussed with focus on the role of rhamnolipids and extracellular DNA.
Fems Immunology and Medical Microbiology | 2012
Morten Alhede; Klaus Qvortrup; Ramon Liebrechts; Niels Høiby; Michael Givskov; Thomas Bjarnsholt
Bacterial biofilms are imaged by various kinds of microscopy including confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). One limitation of CLSM is its restricted magnification, which is resolved by the use of SEM that provides high-magnification spatial images of how the single bacteria are located and interact within the biofilm. However, conventional SEM is limited by the requirement of dehydration of the samples during preparation. As biofilms consist mainly of water, the specimen dehydration might alter its morphology. High magnification yet authentic images are important to understand the physiology of biofilms. We compared conventional SEM, Focused Ion Beam (FIB)-SEM and CLSM with SEM techniques [cryo-SEM and environmental-SEM (ESEM)] that do not require dehydration. In the case of cryo-SEM, the biofilm is not dehydrated but kept frozen to obtain high-magnification images closer to the native state of the sample. Using the ESEM technique, no preparation is needed. Applying these methods to biofilms of Pseudomonas aeruginosa showed us that the dehydration of biofilms substantially influences its appearance and that a more authentic biofilm image emerges when combining all methods.
Infection and Immunity | 2014
Kasper Nørskov Kragh; Morten Alhede; Peter Østrup Jensen; Thomas H. Scheike; Carsten Suhr Jacobsen; Steen Seier Poulsen; Steffen Robert Eickhardt-Sørensen; Hannah Trøstrup; Lars Christoffersen; Hans-Petter Hougen; Lars Fledelius Rickelt; Michael Kühl; Niels Høiby; Thomas Bjarnsholt
ABSTRACT Cystic fibrosis (CF) patients have increased susceptibility to chronic lung infections by Pseudomonas aeruginosa, but the ecophysiology within the CF lung during infections is poorly understood. The aim of this study was to elucidate the in vivo growth physiology of P. aeruginosa within lungs of chronically infected CF patients. A novel, quantitative peptide nucleic acid (PNA) fluorescence in situ hybridization (PNA-FISH)-based method was used to estimate the in vivo growth rates of P. aeruginosa directly in lung tissue samples from CF patients and the growth rates of P. aeruginosa in infected lungs in a mouse model. The growth rate of P. aeruginosa within CF lungs did not correlate with the dimensions of bacterial aggregates but showed an inverse correlation to the concentration of polymorphonuclear leukocytes (PMNs) surrounding the bacteria. A growth-limiting effect on P. aeruginosa by PMNs was also observed in vitro, where this limitation was alleviated in the presence of the alternative electron acceptor nitrate. The finding that P. aeruginosa growth patterns correlate with the number of surrounding PMNs points to a bacteriostatic effect by PMNs via their strong O2 consumption, which slows the growth of P. aeruginosa in infected CF lungs. In support of this, the growth of P. aeruginosa was significantly higher in the respiratory airways than in the conducting airways of mice. These results indicate a complex host-pathogen interaction in chronic P. aeruginosa infection of the CF lung whereby PMNs slow the growth of the bacteria and render them less susceptible to antibiotic treatment while enabling them to persist by anaerobic respiration.