Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morten Goodwin is active.

Publication


Featured researches published by Morten Goodwin.


Journal of Information Technology & Politics | 2011

Global Web Accessibility Analysis of National Government Portals and Ministry Web Sites

Morten Goodwin; Deniz Susar; Annika Nietzio; Mikael Snaprud; Christian S. Jensen

Equal access to public information and services for all is an essential part of the United Nations (UN) Declaration of Human Rights. Today, the Web plays an important role in providing information and services to citizens. Unfortunately, many government Web sites are poorly designed and have accessibility barriers that prevent people with disabilities from using them. This article combines current Web accessibility benchmarking methodologies with a sound strategy for comparing Web accessibility among countries and continents. Furthermore, the article presents the first global analysis of the Web accessibility of 192 United Nation Member States made publically available. The article also identifies common properties of Member States that have accessible and inaccessible Web sites and shows that implementing antidisability discrimination laws is highly beneficial for the accessibility of Web sites, while signing the UN Rights and Dignity of Persons with Disabilities has had no such effect yet. The article demonstrates that, despite the commonly held assumption to the contrary, mature, high-quality Web sites are more accessible than lower quality ones. Moreover, Web accessibility conformance claims by Web site owners are generally exaggerated.


IEEE Transactions on Systems, Man, and Cybernetics | 2014

A novel strategy for solving the stochastic point location problem using a hierarchical searching scheme.

Anis Yazidi; Ole-Christoffer Granmo; B. John Oommen; Morten Goodwin

Stochastic point location (SPL) deals with the problem of a learning mechanism (LM) determining the optimal point on the line when the only input it receives are stochastic signals about the direction in which it should move. One can differentiate the SPL from the traditional class of optimization problems by the fact that the former considers the case where the directional information, for example, as inferred from an Oracle (which possibly computes the derivatives), suffices to achieve the optimization-without actually explicitly computing any derivatives. The SPL can be described in terms of a LM (algorithm) attempting to locate a point on a line. The LM interacts with a random environment which essentially informs it, possibly erroneously, if the unknown parameter is on the left or the right of a given point. Given a current estimate of the optimal solution, all the reported solutions to this problem effectively move along the line to yield updated estimates which are in the neighborhood of the current solution.1 This paper proposes a dramatically distinct strategy, namely, that of partitioning the line in a hierarchical tree-like manner, and of moving to relatively distant points, as characterized by those along the path of the tree. We are thus attempting to merge the rich fields of stochastic optimization and data structures. Indeed, as in the original discretized solution to the SPL, in one sense, our solution utilizes the concept of discretization and operates a uni-dimensional controlled random walk (RW) in the discretized space, to locate the unknown parameter. However, by moving to nonneighbor points in the space, our newly proposed hierarchical stochastic searching on the line (HSSL) solution performs such a controlled RW on the discretized space structured on a superimposed binary tree. We demonstrate that the HSSL solution is orders of magnitude faster than the original SPL solution proposed by Oommen. By a rigorous analysis, the HSSL is shown to be optimal if the effectiveness (or credibility) of the environment, given by p, is greater than the golden ratio conjugate. The solution has been both analytically solved and simulated, and the results obtained are extremely fascinating, as this is the first reported use of time reversibility in the analysis of stochastic learning. The learning automata extensions of the scheme are currently being investigated.


Applied Intelligence | 2015

Escape planning in realistic fire scenarios with Ant Colony Optimisation

Morten Goodwin; Ole-Christoffer Granmo; Jaziar Radianti

An emergency requiring evacuation is a chaotic event, filled with uncertainties both for the people affected and rescuers. The evacuees are often left to themselves for navigation to the escape area. The chaotic situation increases when predefined escape routes are blocked by a hazard, and there is a need to re-think which escape route is safest. This paper addresses automatically finding the safest escape routes in emergency situations in large buildings or ships with imperfect knowledge of the hazards. The proposed solution, based on Ant Colony Optimisation, suggests a near optimal escape plan for every affected person — considering dynamic spread of fires, movability impairments caused by the hazards and faulty unreliable data. Special focus in this paper is on empirical tests for the proposed algorithms. This paper brings together the Ant Colony approach with a realistic fire dynamics simulator, and shows that the proposed solution is not only able to outperform comparable alternatives in static and dynamic environments, but also in environments with realistic spreading of fire and smoke causing fatalities. The aim of the solutions is usage by both individuals, such as from a personal smartphone of one of the evacuees, or for emergency personnel trying to assist large groups from remote locations.


international conference industrial engineering other applications applied intelligent systems | 2013

Ant colony optimisation for planning safe escape routes

Morten Goodwin; Ole-Christoffer Granmo; Jaziar Radianti; Parvaneh Sarshar; Sondre Glimsdal

An emergency requiring evacuation is a chaotic event filled with uncertainties both for the people affected and rescuers. The evacuees are often left to themselves for navigation to the escape area. The chaotic situation increases when a predefined escape route is blocked by a hazard, and there is a need to re-think which escape route is safest. This paper addresses automatically finding the safest escape route in emergency situations in large buildings or ships with imperfect knowledge of the hazards. The proposed solution, based on Ant Colony Optimisation, suggests a near optimal escape plan for every affected person -- considering both dynamic spread of hazards and congestion avoidance. The solution can be used both on an individual bases, such as from a personal smart phone of one of the evacuees, or from a remote location by emergency personnel trying to assist large groups.


Applied Intelligence | 2015

A spatio-temporal probabilistic model of hazard- and crowd dynamics for evacuation planning in disasters

Jaziar Radianti; Ole-Christoffer Granmo; Parvaneh Sarshar; Morten Goodwin; Julie Dugdale; Jose J. Gonzalez

Managing the uncertainties that arise in disasters – such as a ship or building fire – can be extremely challenging. Previous work has typically focused either on modeling crowd behavior, hazard dynamics, or targeting fully known environments. However, when a disaster strikes, uncertainties about the nature, extent and further development of the hazard is the rule rather than the exception. Additionally, crowds and hazard dynamics are both intertwined and uncertain, making evacuation planning extremely difficult. To address this challenge, we propose a novel spatio-temporal probabilistic model that integrates crowd and hazard dynamics, using ship- and building fire as proof-of-concept scenarios. The model is realized as a dynamic Bayesian network (DBN), supporting distinct kinds of crowd evacuation behavior, being based on studies of physical fire models, crowd psychology models, and corresponding flow models. Simulation results demonstrate that the DBN model allows us to track and forecast the movement of people until they escape, as the hazard develops from time step to time step. Our scheme thus opens up for novel in situ threat mapping and evacuation planning under uncertainty, with applications to emergency response.


international conference industrial engineering other applications applied intelligent systems | 2012

A hierarchical learning scheme for solving the stochastic point location problem

Anis Yazidi; Ole-Christoffer Granmo; B. John Oommen; Morten Goodwin

This paper deals with the Stochastic-Point Location (SPL) problem. It presents a solution which is novel in both philosophy and strategy to all the reported related learning algorithms. The SPL problem concerns the task of a Learning Mechanism attempting to locate a point on a line. The mechanism interacts with a random environment which essentially informs it, possibly erroneously, if the unknown parameter is on the left or the right of a given point which also is the current guess. The first pioneering work [6] on the SPL problem presented a solution which operates a one-dimensional controlled Random Walk (RW) in a discretized space to locate the unknown parameter. The primary drawback of the latter scheme is the fact that the steps made are always very conservative. If the step size is decreased the scheme yields a higher accuracy, but the convergence speed is correspondingly decreased. In this paper we introduce the Hierarchical Stochastic Searching on the Line (HSSL) solution. The HSSL solution is shown to provide orders of magnitude faster convergence when compared to the original SPL solution reported in [6]. The heart of the HSSL strategy involves performing a controlled RW on a discretized space, which unlike the traditional RWs, is not structured on the line per se, but rather on a binary tree described by intervals on the line. The overall learning scheme is shown to be optimal if the effectiveness of the environment, p, is greater than the golden ratio conjugate [4] --- which, in itself, is a very intriguing phenomenon. The solution has been both analytically analyzed and simulated, with extremely fascinating results. The strategy presented here can be utilized to determine the best parameter to be used in any optimization problem, and also in any application where the SPL can be applied [6].


IEEE Transactions on Systems, Man, and Cybernetics | 2017

On Solving the Problem of Identifying Unreliable Sensors Without a Knowledge of the Ground Truth: The Case of Stochastic Environments

Anis Yazidi; B. John Oommen; Morten Goodwin

The purpose of this paper is to propose a solution to an extremely pertinent problem, namely, that of identifying unreliable sensors (in a domain of reliable and unreliable ones) without any knowledge of the ground truth. This fascinating paradox can be formulated in simple terms as trying to identify stochastic liars without any additional information about the truth. Though apparently impossible, we will show that it is feasible to solve the problem, a claim that is counter-intuitive in and of itself. One aspect of our contribution is to show how redundancy can be introduced, and how it can be effectively utilized in resolving this paradox. Legacy work and the reported literature (for example, in the so-called weighted majority algorithm) have merely addressed assessing the reliability of a sensor by comparing its reading to the ground truth either in an online or an offline manner. Unfortunately, the fundamental assumption of revealing the ground truth cannot be always guaranteed (or even expected) in many real life scenarios. While some extensions of the Condorcet jury theorem [9] can lead to a probabilistic guarantee on the quality of the fused process, they do not provide a solution to the unreliable sensor identification problem. The essence of our approach involves studying the agreement of each sensor with the rest of the sensors, and not comparing the reading of the individual sensors with the ground truth—as advocated in the literature. Under some mild conditions on the reliability of the sensors, we can prove that we can, indeed, filter out the unreliable ones. Our approach leverages the power of the theory of learning automata (LA) so as to gradually learn the identity of the reliable and unreliable sensors. To achieve this, we resort to a team of LA, where a distinct automaton is associated with each sensor. The solution provided here has been subjected to rigorous experimental tests, and the results presented are, in our opinion, both novel and conclusive.


international conference industrial, engineering & other applications applied intelligent systems | 2015

Towards Multilevel Ant Colony Optimisation for the Euclidean Symmetric Traveling Salesman Problem

Thomas Andre Lian; Marilex Rea Llave; Morten Goodwin; Noureddine Bouhmala

Ant Colony Optimization ACO metaheuristic is one of the best known examples of swarm intelligence systems in which researchers study the foraging behavior of bees, ants and other social insects in order to solve combinatorial optimization problems. In this paper, a multilevel Ant Colony Optimization MLV-ACO for solving the traveling salesman problem is proposed, by using a multilevel process operating in a coarse-to-fine strategy. This strategy involves recursive coarsening to create a hierarchy of increasingly smaller and coarser versions of the original problem. The heart of the approach is grouping the variables that are part of the problem into clusters, which is repeated until the size of the smallest cluster falls below a specified reduction threshold. Subsequently, a solution for the problem at the coarsest level is generated, and then successively projected back onto each of the intermediate levels in reverse order. The solution at each level is improved using the ACO metaheuristic before moving to the parent level. The proposed solution has been tested both in circular and randomized environments, and outperform single level counterparts.


international conference industrial engineering other applications applied intelligent systems | 2013

A spatio-temporal probabilistic model of hazard and crowd dynamics in disasters for evacuation planning

Ole-Christoffer Granmo; Jaziar Radianti; Morten Goodwin; Julie Dugdale; Parvaneh Sarshar; Sondre Glimsdal; Jose J. Gonzalez

Managing the uncertainties that arise in disasters - such as ship fire - can be extremely challenging. Previous work has typically focused either on modeling crowd behavior or hazard dynamics, targeting fully known environments. However, when a disaster strikes, uncertainty about the nature, extent and further development of the hazard is the rule rather than the exception. Additionally, crowd and hazard dynamics are both intertwined and uncertain, making evacuation planning extremely difficult. To address this challenge, we propose a novel spatio-temporal probabilistic model that integrates crowd with hazard dynamics, using a ship fire as a proof-of-concept scenario. The model is realized as a dynamic Bayesian network (DBN), supporting distinct kinds of crowd evacuation behavior - both descriptive and normative (optimal). Descriptive modeling is based on studies of physical fire models, crowd psychology models, and corresponding flow models, while we identify optimal behavior using Ant-Based Colony Optimization (ACO). Simulation results demonstrate that the DNB model allows us to track and forecast the movement of people until they escape, as the hazard develops from time step to time step. Furthermore, the ACO provides safe paths, dynamically responding to current threats.


web intelligence | 2015

On Distinguishing between Reliable and Unreliable Sensors Without a Knowledge of the Ground Truth

Anis Yazidi; B. John Oommen; Morten Goodwin

In many applications, data from different sensors are aggregated in order to obtain more reliable information about the process that the sensors are monitoring. However, the quality of the aggregated information is intricately dependent on the reliability of the individual sensors. In fact, unreliable sensors will tend to report erroneous values of the ground truth, and thus degrade the quality of the fused information. Finding strategies to identify unreliable sensors can assist in having a counter-effect on their respective detrimental influences on the fusion process, and this has has been a focal concern in the literature. The purpose of this paper is to propose a solution to an extremely pertinent problem, namely, that of identifying which sensors are unreliable without any knowledge of the ground truth. This fascinating paradox can be formulated in simple terms as trying to identify stochastic liars without any additional information about the truth. Though apparently impossible, we will show that it is feasible to solve the problem, a claim that is counter-intuitive in and of itself. To the best of our knowledge, this is the first reported solution to the aforementioned paradox. Legacy work and the reported literature have merely addressed assessing the reliability of a sensor by comparing its reading to the ground truth either in an online or an offline manner. The informed reader will observe that the so-called Weighted Majority Algorithm is a representative example of a large class of such legacy algorithms. The essence of our approach involves studying the agreement of each sensor with the rest of the sensors, and not comparing the reading of the individual sensors with the ground truth -- as advocated in the literature. Under some mild conditions on the reliability of the sensors, we can prove that we can, indeed, filter out the unreliable ones. Our approach leverages the power of the theory of Learning Automata (LA) so as to gradually learn the identity of the reliable and unreliable sensors. To achieve this, we resort to a team of LA, where a distinct automaton is associated with each sensor. The solution provided here has been subjected to rigorous experimental tests, and the results presented are, in our opinion, both novel and conclusive.

Collaboration


Dive into the Morten Goodwin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anis Yazidi

Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge