Morten Mattingsdal
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Morten Mattingsdal.
Nature Genetics | 2012
Jason L. Stein; Sarah E. Medland; A A Vasquez; Derrek P. Hibar; R. E. Senstad; Anderson M. Winkler; Roberto Toro; K Appel; R. Bartecek; Ørjan Bergmann; Manon Bernard; Andrew Anand Brown; Dara M. Cannon; M. Mallar Chakravarty; Andrea Christoforou; M. Domin; Oliver Grimm; Marisa Hollinshead; Avram J. Holmes; Georg Homuth; J.J. Hottenga; Camilla Langan; Lorna M. Lopez; Narelle K. Hansell; Kristy Hwang; Sungeun Kim; Gonzalo Laje; Phil H. Lee; Xinmin Liu; Eva Loth
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimers disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).
Journal of Psychiatric Research | 2010
Lavinia Athanasiu; Morten Mattingsdal; Anna K. Kähler; Andrew Anand Brown; Omar Gustafsson; Ingrid Agartz; Ina Giegling; Pierandrea Muglia; Sven Cichon; Marcella Rietschel; Olli Pietiläinen; Leena Peltonen; Elvira Bramon; David A. Collier; David St Clair; Engilbert Sigurdsson; Hannes Petursson; Dan Rujescu; Ingrid Melle; Vidar M. Steen; Srdjan Djurovic; Ole A. Andreassen
We have performed a genome-wide association study (GWAS) of schizophrenia in a Norwegian discovery sample of 201 cases and 305 controls (TOP study) with a focused replication analysis in a larger European sample of 2663 cases and 13,780 control subjects (SGENE-plus study). Firstly, the discovery sample was genotyped with Affymetrix Genome-Wide Human SNP Array 6.0 and 572,888 markers were tested for schizophrenia association. No SNPs in the discovery sample attained genome-wide significance (P<8.7 x 10(-8)). Secondly, based on the GWAS data, we selected 1000 markers with the lowest P values in the discovery TOP sample, and tested these (or HapMap-based surrogates) for association in the replication sample. Sixteen loci were associated with schizophrenia (nominal P value<0.05 and concurring OR) in the replication sample. As a next step, we performed a combined analysis of the findings from these two studies, and the strongest evidence for association with schizophrenia was provided for markers rs7045881 on 9p21, rs433598 on 16p12 and rs10761482 on 10q21. The markers are located in PLAA, ACSM1 and ANK3, respectively. PLAA has not previously been described as a susceptibility gene, but 9p21 is implied as a schizophrenia linkage region. ACSM1 has been identified as a susceptibility gene in a previous schizophrenia GWAS study. The association of ANK3 with schizophrenia is intriguing in light of recent associations of ANK3 with bipolar disorder, thereby supporting the hypothesis of an overlap in genetic susceptibility between these psychopathological entities.
American Journal of Human Genetics | 2008
Gregor D. Gilfillan; Kaja Kristine Selmer; Ingrid Roxrud; Raffaella Smith; Mårten Kyllerman; Kristin Eiklid; Mette Kroken; Morten Mattingsdal; Thore Egeland; Harald Stenmark; Hans Sjøholm; Andres Server; Lena Samuelsson; Arnold Christianson; Patrick Tarpey; Annabel Whibley; Michael R. Stratton; P. Andrew Futreal; Jon Teague; Sarah Edkins; Jozef Gecz; Gillian Turner; F. Lucy Raymond; Charles E. Schwartz; Roger E. Stevenson; Dag E. Undlien; Petter Strømme
Linkage analysis and DNA sequencing in a family exhibiting an X-linked mental retardation (XLMR) syndrome, characterized by microcephaly, epilepsy, ataxia, and absent speech and resembling Angelman syndrome, identified a deletion in the SLC9A6 gene encoding the Na(+)/H(+) exchanger NHE6. Subsequently, other mutations were found in a male with mental retardation (MR) who had been investigated for Angelman syndrome and in two XLMR families with epilepsy and ataxia, including the family designated as having Christianson syndrome. Therefore, mutations in SLC9A6 cause X-linked mental retardation. Additionally, males with findings suggestive of unexplained Angelman syndrome should be considered as potential candidates for SLC9A6 mutations.
Molecular Psychiatry | 2014
Vesna Boraska; Jab Floyd; Lorraine Southam; N W Rayner; Ioanna Tachmazidou; Stephanie Zerwas; Osp Davis; Sietske G. Helder; R Burghardt; K Egberts; Stefan Ehrlich; Susann Scherag; Nicolas Ramoz; Judith Hendriks; Eric Strengman; A. van Elburg; A Bruson; Maurizio Clementi; M Forzan; E Tenconi; Elisa Docampo; Geòrgia Escaramís; A Rajewski; A Slopien; Leila Karhunen; Ingrid Meulenbelt; Mario Maj; Artemis Tsitsika; L Slachtova; Zeynep Yilmaz
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge–purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10−7) in SOX2OT and rs17030795 (P=5.84 × 10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10−6) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10−6) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10−6), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
PLOS Genetics | 2013
Ole A. Andreassen; Wesley K. Thompson; Andrew J. Schork; Stephan Ripke; Morten Mattingsdal; John R. Kelsoe; Kenneth S. Kendler; Michael Conlon O'Donovan; Dan Rujescu; Thomas Werge; Pamela Sklar; J. Cooper Roddey; Chi-Hua Chen; Linda K. McEvoy; Rahul S. Desikan; Srdjan Djurovic; Anders M. Dale
Several lines of evidence suggest that genome-wide association studies (GWAS) have the potential to explain more of the “missing heritability” of common complex phenotypes. However, reliable methods to identify a larger proportion of single nucleotide polymorphisms (SNPs) that impact disease risk are currently lacking. Here, we use a genetic pleiotropy-informed conditional false discovery rate (FDR) method on GWAS summary statistics data to identify new loci associated with schizophrenia (SCZ) and bipolar disorders (BD), two highly heritable disorders with significant missing heritability. Epidemiological and clinical evidence suggest similar disease characteristics and overlapping genes between SCZ and BD. Here, we computed conditional Q–Q curves of data from the Psychiatric Genome Consortium (SCZ; n = 9,379 cases and n = 7,736 controls; BD: n = 6,990 cases and n = 4,820 controls) to show enrichment of SNPs associated with SCZ as a function of association with BD and vice versa with a corresponding reduction in FDR. Applying the conditional FDR method, we identified 58 loci associated with SCZ and 35 loci associated with BD below the conditional FDR level of 0.05. Of these, 14 loci were associated with both SCZ and BD (conjunction FDR). Together, these findings show the feasibility of genetic pleiotropy-informed methods to improve gene discovery in SCZ and BD and indicate overlapping genetic mechanisms between these two disorders.
PLOS Genetics | 2012
Kristina Gervin; Magnus Dehli Vigeland; Morten Mattingsdal; Martin Hammerø; Heidi Nygård; Anne O. Olsen; Ingunn Brandt; Jennifer R. Harris; Dag E. Undlien; Robert Lyle
Monozygotic (MZ) twins do not show complete concordance for many complex diseases; for example, discordance rates for autoimmune diseases are 20%–80%. MZ discordance indicates a role for epigenetic or environmental factors in disease. We used MZ twins discordant for psoriasis to search for genome-wide differences in DNA methylation and gene expression in CD4+ and CD8+ cells using Illuminas HumanMethylation27 and HT-12 expression assays, respectively. Analysis of these data revealed no differentially methylated or expressed genes between co-twins when analyzed separately, although we observed a substantial amount of small differences. However, combined analysis of DNA methylation and gene expression identified genes where differences in DNA methylation between unaffected and affected twins were correlated with differences in gene expression. Several of the top-ranked genes according to significance of the correlation in CD4+ cells are known to be associated with psoriasis. Further, gene ontology (GO) analysis revealed enrichment of biological processes associated with the immune response and clustering of genes in a biological pathway comprising cytokines and chemokines. These data suggest that DNA methylation is involved in an epigenetic dysregulation of biological pathways involved in the pathogenesis of psoriasis. This is the first study based on data from MZ twins discordant for psoriasis to detect epigenetic alterations that potentially contribute to development of the disease.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Lars M. Rimol; Ingrid Agartz; Srdjan Djurovic; Andrew Anand Brown; J. Cooper Roddey; Anna K. Kähler; Morten Mattingsdal; Lavinia Athanasiu; Alexander H. Joyner; Nicholas J. Schork; Eric Halgren; Kjetil Sundet; Ingrid Melle; Anders M. Dale; Ole A. Andreassen
Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717–728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637–644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2, MCPH1, and ASPM, with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample (n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample (n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions.
Journal of Affective Disorders | 2010
Srdjan Djurovic; Omar Gustafsson; Morten Mattingsdal; Lavinia Athanasiu; Thomas Bjella; Martin Tesli; Ingrid Agartz; Steinar Lorentzen; Ingrid Melle; Gunnar Morken; Ole A. Andreassen
BACKGROUND In the present study we investigated genetic variants associated with bipolar disorder in a homogenous Norwegian sample, and potential genetic overlap with schizophrenia, using the Affymetrix 6.0 array. METHODS We carried out a genome-wide association study (GWAS) by genotyping 620 390 single-nucleotide polymorphisms (SNPs) in a case-control sample of Norwegian origin (the TOP study) including bipolar disorder (n=194), healthy controls (n=336) and schizophrenia (n=230), followed by replication and combined analysis in a genetically concordant Icelandic sample of bipolar disorder (n=435), and healthy controls (n=10,258). RESULTS We selected 1000 markers with the lowest P values in the TOP discovery GWAS and tested these (or their surrogates) for association in the Icelandic replication sample. Polymorphisms on 35 loci were confirmed associated with bipolar disorder (nominal P value<0.05; not corrected for multiple testing) in the replication sample. The most significant markers were located in DLEU2, GUCY1B2, PKIA, CCL2, CNTNAP5, DPP10, and FBN1. The combined group of schizophrenia and bipolar disorder compared to controls did not provide additional significant findings. LIMITATIONS Relatively small number of samples. CONCLUSIONS We detected weak but reproducible association with markers in several genes, in proximity to susceptibility loci found in previous GWAS studies of bipolar disorder. Further work is required to study their localization, expression, and regulation and international meta-analytic efforts will help to further elucidate their role.
Molecular Psychiatry | 2015
Ole A. Andreassen; Hanne F. Harbo; Yunpeng Wang; Wesley K. Thompson; Andrew J. Schork; Morten Mattingsdal; Zuber; Francesco Bettella; Stephan Ripke; John R. Kelsoe; Kenneth S. Kendler; Michael Conlon O'Donovan; Pamela Sklar; Linda K. McEvoy; Rahul S. Desikan; Benedicte A. Lie; Srdjan Djurovic; Anders M. Dale
Converging evidence implicates immune abnormalities in schizophrenia (SCZ), and recent genome-wide association studies (GWAS) have identified immune-related single-nucleotide polymorphisms (SNPs) associated with SCZ. Using the conditional false discovery rate (FDR) approach, we evaluated pleiotropy in SNPs associated with SCZ (n=21 856) and multiple sclerosis (MS) (n=43 879), an inflammatory, demyelinating disease of the central nervous system. Because SCZ and bipolar disorder (BD) show substantial clinical and genetic overlap, we also investigated pleiotropy between BD (n=16 731) and MS. We found significant genetic overlap between SCZ and MS and identified 21 independent loci associated with SCZ, conditioned on association with MS. This enrichment was driven by the major histocompatibility complex (MHC). Importantly, we detected the involvement of the same human leukocyte antigen (HLA) alleles in both SCZ and MS, but with an opposite directionality of effect of associated HLA alleles (that is, MS risk alleles were associated with decreased SCZ risk). In contrast, we found no genetic overlap between BD and MS. Considered together, our findings demonstrate genetic pleiotropy between SCZ and MS and suggest that the MHC signals may differentiate SCZ from BD susceptibility.
PLOS ONE | 2011
Keith Humphreys; Alexander Grankvist; Monica Leu; Per Hall; Jianjun Liu; Samuli Ripatti; Karola Rehnström; Leif Groop; Lars Klareskog; Bo Ding; Henrik Grönberg; Jianfeng Xu; Nancy L. Pedersen; Paul Lichtenstein; Morten Mattingsdal; Ole A. Andreassen; Colm O'Dushlaine; Shaun Purcell; Pamela Sklar; Patrick F. Sullivan; Christina M. Hultman; Juni Palmgren; Patrik K. E. Magnusson
Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise Fst) indicated that the population of Swedens southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Swedens northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS) with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to false conclusions.