Mosbah Zidani
University of Biskra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mosbah Zidani.
Materials Science Forum | 2006
Mosbah Zidani; Zakaria Boumerzoug; Thierry Baudin; Richard Penelle
The effect of cold wire drawing on texture of industrial low carbon steel wire was investigated. On the other hand, the mechanism of recrystallization of drawn-wire was studied during different isothermal annealing below 723 °C. The structural evolution of wire was studied by optical microscopy, SEM, EBSD and X-Ray diffraction. From this study, a fiber texture was observed in deformed wire. However, a recrystallization reaction occurs after critical temperature during annealing.
Materials Science Forum | 2007
Mosbah Zidani; Zakaria Boumerzoug; Denis Solas; Thierry Baudin
In this work, the effect of the deformation, caused by cold wire drawing, on the microstructure and the texture of low carbon steel wire (0.06 wt % C) is examined. The combined influence of the deformation level and the recrystallization temperature on the development of new grains is studied for all wires. Isothermal tests of annealing allow the determination of the critical temperature of recrystallization estimated above 450°C. The temperature effect is studied below the eutectoid level, at 500°C, 600°C and 680°C. The appearance of a homogeneous recrystallization is noted over the section of the wire. The recrystallized grains keep the same orientation as the deformed grains. The expansion of time of annealing lead to recrystallization in the ferritic grains accompanied by a spheroidization of the lamellar pearlite. The kinetics of recrystallization and spheroidization are accelerated by increasing of annealing temperature and the deformation level. The experimental techniques used in this study are: the Scanning Electron Microscope (SEM), the Electron Back Scattered Diffraction (EBSD), the X-ray diffraction and Vickers microhardness.
International Journal of Engineering Research in Africa | 2017
Lahcene Mebarki; Mosbah Zidani; Said Mechachti; Hichem Farh; Djamel Miroud
The present work aims at determining the effects of Nickel addition on the phase’s distribution in sintered part. It aims equally at identifying the effect of such addition on the microstructure and the mechanical properties. The addition to mixtures of alloying elements in their primitive form can lead to the formation of a heterogeneous microstructure in the sintered parts produced by the powder metallurgy (PM) process. It has been proved that the addition of nickel to an iron powder mixture forms nickel-rich areas (NRA) in the sintered parts. This is basically related to the low diffusion rate of nickel in iron at conventional sintering temperatures.
Materials Science Forum | 2004
Zakaria Boumerzoug; N. Lahraki; Mosbah Zidani
The operation which allows reducing wire diameter is called wiredrawing. The wiredrawing principle is that of using the metal plasticity to reduce the wire diameter. Our study is based on wire steel containing 0.05 % carbon. The regular orientation of the grains (texture) caused by external stresses during the drawing process is observed. This texture causes a phenomenon of material consolidation. Two annealing temperatures were applied on deformed wires for modifying the structure and mechanical properties. The effects of drawing and thermal treatment on our material were studied by, scanning electron microscope, hardness measurements and X – ray diffraction.
International Journal of Engineering Research in Africa | 2017
Karim Djemmal; Hichem Farh; Rebai Guemini; Mosbah Zidani; Fares Serradj
AlMgSi alloys (6XXX series) provide a good strength due to the precipitation of β” and β (Mg2Si) phases. They have also very good formability which is required for different forming process after appropriate heat treatments.This work was carried out to investigate the effect of the addition of copper and the excess of Si on the response of natural and artificial aging of two Al-Mg-Si alloys. The aging parameters on precipitation sequence of two Al-Mg-Si alloys with and without excess Si were studied by DSC, MET and Vickers hardness measurement. The combined effect of Cu, Fe and excess of Si was found to accelerate the precipitation of the hardening phases. The additions of copper to the AlMgSi refine the average of the grain size and have a greater hardening effect compared to the excess silicon addition.
International Journal of Engineering Research in Africa | 2018
Mokhtar Bayarassou; Mosbah Zidani; Hichem Farh
The objective of the present investigation is to study the changes in microstructures and mechanical properties during ageing and homogenization treatment of Al-Mg-Si alloy wire cold drawn at the different deformation in ENICAB (Biskra), destined for the transport of electric energy. And also to understand the phase formation during the cold drawing of Al-Mg-Si alloy wires, as well as the combined influence of the plastic deformation level and the influence of aging temperature. Wire section reduction shows a change in microstructure and texture. Characterization methods used in this work is: Optical Microscopy (OM), Scanning Electron Microscope (SEM) and X-ray diffraction.
International Journal of Engineering Research in Africa | 2018
Toufik Djimaoui; Mosbah Zidani; Mohamed Chaouki Nebbar; T. Abid; Hichem Farh; Anne Laure Helbert; François Brisset; Thierry Baudin
The aim of the present work is to study the evolution of microstructure, texture and mechanical properties during drawing of mild steel wire of type F8Z used in the manufacture of welding electrodes TREFISOUD. It was found that the as received wire has a ferritic-pearlitic microstructure corresponding to an isotopic state (without texture). This microstructure is relatively heterogeneous in the wire section. On the other hand, after strong drawing structure appears relatively homogeneous, throughout the section of the drawn wire. Also the deformation process by drawing causes the hardening of wire as a function of deformation with a reinforcing component of the fiber texture <110> // ND (majority), typical for bcc materials. Characterization methods used in this work is: Optical microscopy (OM), Scanning Electron Microscopy (SEM), the Electron Back Scattered Diffraction EBSD, Vickers microhardness and the tensile tests.
Functional Materials: Technological Aspects of Production and Processing | 2018
Mokhtar Bayarassou; Mosbah Zidani; Hichem Farh
The scope of this work is to study of microstructural changes and mechanical properties during natural and artificial ageing treatment of AGS Alloy wire cold drawn with different deformation at ENICAB in Biskra. And as well to know the phase formation during different deformation of aluminum alloys wires. as well as the combined influence of the plastic deformation rate and the aging temperature. Wire section reduction shows a change in microstructure and texture. The methods of characterization used in this work are: scanning electron microscope and X-ray diffraction, micro hardness (Hv).
Functional Materials: Technological Aspects of Production and Processing | 2018
Lahcene Mebarki; Mosbah Zidani; Abdelyamine Boukhobza; Said Mechachti; Kamel Fedaoui
The objective of this work is the development of a Fe-W-Ni sintered steel obtained by the powder metallurgy technique. The latter is widely used today for the design of new alloys based on powders (iron) to meet industrial requirements in strength and wear characteristics. The proposed alloy is based on iron mixed with 5% nickel and various percentages (5, 10, 15 and 20%) of tungsten. The effect of the tungsten W content on mechanical and structural properties is presented.
Functional Materials: Technological Aspects of Production and Processing | 2018
Farida Khamouli; Mosbah Zidani; K. Digheche; Adel Saoudi; L'hadi Atoui
The aim of this work is to study the influence of the E6010 and E8018-G fluxes on the chemical composition, microstructure, formation of inclusions and micro hardness in different passes (P1, P2 and P3) of X42 welded steel. The marketed chemical composition of used fluxes is: E6010 and E8018-G, which have a low carbon electrodes. The fusion zone microstructure consists of acicular ferrite. The fluxes (FA and FC) have the high TiO2 and SiO2 contents respectively. The high content of Ti and Si, was also detected in the melted zones (P1 ,P2 and P3). The MnO2 oxide proportion in the fluxes (E6010, and E8018-G) is constant (0.94-0.99). However, the Mn content increases in the melted zones (P3 and P1). The highest percentages of Si and Mn was detected in the outer and inner passes respectively of melted zone, relatively to the base metal. The variation of the elements mass concentrations (Mn, Cr, Si and Ti) shows a contradictory variation on the three points in the melted zone passes (P1 and P3). White and black non-metallic inclusions are observed regardless the used flux. The micro-hardness in the multi-pass melting zone with the fluxes (E6010 and E8018-G) varies according to the variation of the equivalent carbon in the different filler metals.