Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mosè Manni is active.

Publication


Featured researches published by Mosè Manni.


Molecular Biology and Evolution | 2018

BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics

Robert M. Waterhouse; Mathieu Seppey; Felipe A. Simão; Mosè Manni; Panagiotis Ioannidis; Guennadi Klioutchnikov; Evgenia V. Kriventseva; Evgeny M. Zdobnov

&NA; Genomics promises comprehensive surveying of genomes and metagenomes, but rapidly changing technologies and expanding data volumes make evaluation of completeness a challenging task. Technical sequencing quality metrics can be complemented by quantifying completeness of genomic data sets in terms of the expected gene content of Benchmarking Universal Single‐Copy Orthologs (BUSCO, http://busco.ezlab.org). The latest software release implements a complete refactoring of the code to make it more flexible and extendable to facilitate high‐throughput assessments. The original six lineage assessment data sets have been updated with improved species sampling, 34 new subsets have been built for vertebrates, arthropods, fungi, and prokaryotes that greatly enhance resolution, and data sets are now also available for nematodes, protists, and plants. Here, we present BUSCO v3 with example analyses that highlight the wide‐ranging utility of BUSCO assessments, which extend beyond quality control of genomics data sets to applications in comparative genomics analyses, gene predictor training, metagenomics, and phylogenomics.


Genome Biology | 2016

The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

Alexie Papanicolaou; Marc F. Schetelig; Peter Arensburger; Peter W. Atkinson; Joshua B. Benoit; Kostas Bourtzis; Pedro Castañera; John P. Cavanaugh; Hsu Chao; Christopher Childers; Ingrid Curril; Huyen Dinh; HarshaVardhan Doddapaneni; Amanda Dolan; Shannon Dugan; Markus Friedrich; Giuliano Gasperi; Scott M. Geib; Georgios Georgakilas; Richard A. Gibbs; Sarah D. Giers; Ludvik M. Gomulski; Miguel González-Guzmán; Ana Guillem-Amat; Yi Han; Artemis G. Hatzigeorgiou; Pedro Hernández-Crespo; Daniel S.T. Hughes; Jeffery W. Jones; Dimitra Karagkouni

The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.


PLOS ONE | 2012

Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata.

Francesca Scolari; Ludvik M. Gomulski; José M. C. Ribeiro; Paolo Siciliano; Alice Meraldi; Marco Falchetto; Angelica Bonomi; Mosè Manni; Paolo Gabrieli; Alberto Malovini; Riccardo Bellazzi; Serap Aksoy; Giuliano Gasperi; Anna R. Malacrida

Background Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active. Methodology/Principal Findings We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs) from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female. Conclusions/Significance We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male recovery dynamics in terms of accessory gland gene expression profiles and correlated remating inhibition mechanisms may permit the improvement of pest management approaches.


Parasites & Vectors | 2015

Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus

Mosè Manni; Ludvik M. Gomulski; Nidchaya Aketarawong; Gabriella Tait; Francesca Scolari; Pradya Somboon; C. R. Guglielmino; Anna R. Malacrida; Giuliano Gasperi

BackgroundThe dramatic worldwide expansion of Aedes albopictus (the Asian tiger mosquito) and its vector competence for numerous arboviruses represent a growing threat to public health security. Molecular markers are crucially needed for tracking the rapid spread of this mosquito and to obtain a deeper knowledge of population structure. This is a fundamental requirement for the development of strict monitoring protocols and for the improvement of sustainable control measures.MethodsWild population samples from putative source areas and from newly colonised regions were analysed for variability at the ribosomal DNA internal transcribed spacer 2 (ITS2). Moreover, a new set of 23 microsatellite markers (SSR) was developed. Sixteen of these SSRs were tested in an ancestral (Thailand) and two adventive Italian populations.ResultsSeventy-six ITS2 sequences representing 52 unique haplotypes were identified, and AMOVA indicated that most of their variation occurred within individuals (74.36%), while only about 8% was detected among populations. Spatial analyses of molecular variance revealed that haplotype genetic similarity was not related to the geographic proximity of populations and the haplotype phylogeny clearly indicated that highly related sequences were distributed across populations from different geographical regions. The SSR markers displayed a high level of polymorphism both in the ancestral and in adventive populations, and FST estimates suggested the absence of great differentiation. The ancestral nature of the Thai population was corroborated by its higher level of variability.ConclusionsThe two types of genetic markers here implemented revealed the distribution of genetic diversity within and between populations and provide clues on the dispersion dynamics of this species. It appears that the diffusion of this mosquito does not conform to a progressive expansion from the native Asian source area, but to a relatively recent and chaotic propagule distribution mediated by human activities. Under this scenario, multiple introductions and admixture events probably play an important role in maintaining the genetic diversity and in avoiding bottleneck effects. The polymorphic SSR markers here implemented will provide an important tool for reconstructing the routes of invasion followed by this mosquito.


PLOS Neglected Tropical Diseases | 2017

Genetic evidence for a worldwide chaotic dispersion pattern of the arbovirus vector, Aedes albopictus

Mosè Manni; C. R. Guglielmino; Francesca Scolari; Anubis Vega-Rúa; Anna-Bella Failloux; Pradya Somboon; Antonella Lisa; Grazia Savini; Mariangela Bonizzoni; Ludvik M. Gomulski; Anna R. Malacrida; Giuliano Gasperi

Background Invasive species represent a global concern for their rapid spread and the possibility of infectious disease transmission. This is the case of the global invader Aedes albopictus, the Asian tiger mosquito. This species is a vector of medically important arboviruses, notably chikungunya (CHIKV), dengue (DENV) and Zika (ZIKV). The reconstruction of the complex colonization pattern of this mosquito has great potential for mitigating its spread and, consequently, disease risks. Methodology/Principal findings Classical population genetics analyses and Approximate Bayesian Computation (ABC) approaches were combined to disentangle the demographic history of Aedes albopictus populations from representative countries in the Southeast Asian native range and in the recent and more recently colonized areas. In Southeast Asia, the low differentiation and the high co-ancestry values identified among China, Thailand and Japan indicate that, in the native range, these populations maintain high genetic connectivity, revealing their ancestral common origin. China appears to be the oldest population. Outside Southeast Asia, the invasion process in La Réunion, America and the Mediterranean Basin is primarily supported by a chaotic propagule distribution, which cooperates in maintaining a relatively high genetic diversity within the adventive populations. Conclusions/Significance From our data, it appears that independent and also trans-continental introductions of Ae. albopictus may have facilitated the rapid establishment of adventive populations through admixture of unrelated genomes. As a consequence, a great amount of intra-population variability has been detected, and it is likely that this variability may extend to the genetic mechanisms controlling vector competence. Thus, in the context of the invasion process of this mosquito, it is possible that both population ancestry and admixture contribute to create the conditions for the efficient transmission of arboviruses and for outbreak establishment.


PLOS ONE | 2014

Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata.

Paolo Siciliano; Francesca Scolari; Ludvik M. Gomulski; Marco Falchetto; Mosè Manni; Paolo Gabrieli; Linda M. Field; Jing-Jiang Zhou; Giuliano Gasperi; Anna R. Malacrida

The Mediterranean fruit fly, Ceratitis capitata (medfly), is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats. Chemosensory behaviour plays an important role in many crucial stages in the life of this insect, such as the detection of pheromone cues during mate pursuit and odorants during host plant localisation. Thus, the analysis of the chemosensory gene repertoire is an important step for the interpretation of the biology of this species and consequently its invasive potential. Moreover, these genes may represent ideal targets for the development of novel, effective control methods and pest population monitoring systems. Expressed sequence tag libraries from C. capitata adult heads, embryos, male accessory glands and testes were screened for sequences encoding putative odorant binding proteins (OBPs). A total of seventeen putative OBP transcripts were identified, corresponding to 13 Classic, three Minus-C and one Plus-C subfamily OBPs. The tissue distributions of the OBP transcripts were assessed by RT-PCR and a subset of five genes with predicted proteins sharing high sequence similarities and close phylogenetic affinities to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs) were characterised in greater detail. Real Time quantitative PCR was used to assess the effects of maturation, mating and time of day on the transcript abundances of the putative PBPRP genes in the principal olfactory organs, the antennae, in males and females. The results of the present study have facilitated the annotation of OBP genes in the recently released medfly genome sequence and represent a significant contribution to the characterisation of the medfly chemosensory repertoire. The identification of these medfly OBPs/PBPRPs permitted evolutionary and functional comparisons with homologous sequences from other tephritids of the genera Bactrocera and Rhagoletis.


Pathogens and Global Health | 2015

A draft genome sequence of an invasive mosquito: an Italian Aedes albopictus

Vicky Dritsou; Pantelis Topalis; Nikolai Windbichler; Alekos Simoni; Ann Hall; Daniel Lawson; Malcolm Hinsley; Daniel S.T. Hughes; Valerio Napolioni; Francesca Crucianelli; Elena Deligianni; Giuliano Gasperi; Ludvik M. Gomulski; Grazia Savini; Mosè Manni; Francesca Scolari; Anna R. Malacrida; Bruno Arcà; José M. C. Ribeiro; Fabrizio Lombardo; Giuseppe Saccone; Marco Salvemini; Riccardo Moretti; Giuseppe Aprea; Maurizio Calvitti; Matteo Picciolini; Philippos Aris Papathanos; Roberta Spaccapelo; Guido Favia; Andrea Crisanti

Abstract The draft genome sequence of Italian specimens of the Asian tiger mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae) was determined using a standard NGS (next generation sequencing) approach. The size of the assembled genome is comparable to that of Aedes aegypti; the two mosquitoes are also similar as far as the high content of repetitive DNA is concerned, most of which is made up of transposable elements. Although, based on BUSCO (Benchmarking Universal Single-Copy Orthologues) analysis, the genome assembly reported here contains more than 99% of protein-coding genes, several of those are expected to be represented in the assembly in a fragmented state. We also present here the annotation of several families of genes (tRNA genes, miRNA genes, the sialome, genes involved in chromatin condensation, sex determination genes, odorant binding proteins and odorant receptors). These analyses confirm that the assembly can be used for the study of the biology of this invasive vector of disease.


ZooKeys | 2015

Relevant genetic differentiation among Brazilian populations of Anastrepha fraterculus (Diptera, Tephritidae).

Mosè Manni; Kátia M Lima; C. R. Guglielmino; Silvia Lanzavecchia; Marianela Juri; Teresa Vera; Jorge L. Cladera; Francesca Scolari; Ludvik M. Gomulski; Mariangela Bonizzoni; Giuliano Gasperi; Janisete Gomes Silva; Anna R. Malacrida

Abstract We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area.


Genome Biology and Evolution | 2017

Genomic features of the damselfly calopteryx splendens representing a sister clade to most insect orders

Panagiotis Ioannidis; Felipe A. Simão; Robert M. Waterhouse; Mosè Manni; Mathieu Seppey; Hugh M. Robertson; Bernhard Misof; Oliver Niehuis; Evgeny M. Zdobnov

Insects comprise the most diverse and successful animal group with over one million described species that are found in almost every terrestrial and limnic habitat, with many being used as important models in genetics, ecology, and evolutionary research. Genome sequencing projects have greatly expanded the sampling of species from many insect orders, but genomic resources for species of certain insect lineages have remained relatively limited to date. To address this paucity, we sequenced the genome of the banded demoiselle, Calopteryx splendens, a damselfly (Odonata: Zygoptera) belonging to Palaeoptera, the clade containing the first winged insects. The 1.6 Gbp C. splendens draft genome assembly is one of the largest insect genomes sequenced to date and encodes a predicted set of 22,523 protein-coding genes. Comparative genomic analyses with other sequenced insects identified a relatively small repertoire of C. splendens detoxification genes, which could explain its previously noted sensitivity to habitat pollution. Intriguingly, this repertoire includes a cytochrome P450 gene not previously described in any insect genome. The C. splendens immune gene repertoire appears relatively complete and features several genes encoding novel multi-domain peptidoglycan recognition proteins. Analysis of chemosensory genes revealed the presence of both gustatory and ionotropic receptors, as well as the insect odorant receptor coreceptor gene (OrCo) and at least four partner odorant receptors (ORs). This represents the oldest known instance of a complete OrCo/OR system in insects, and provides the molecular underpinning for odonate olfaction. The C. splendens genome improves the sampling of insect lineages that diverged before the radiation of Holometabola and offers new opportunities for molecular-level evolutionary, ecological, and behavioral studies.


Genetica | 2014

The oriental fruitfly Bactrocera dorsalis s.s. in East Asia: disentangling the different forces promoting the invasion and shaping the genetic make-up of populations

Nidchaya Aketarawong; C. R. Guglielmino; N. Karam; Marco Falchetto; Mosè Manni; Francesca Scolari; Ludvik M. Gomulski; Giuliano Gasperi; Anna R. Malacrida

Abstract The Oriental fruit fly, Bactrocera dorsalis sensu stricto, is one of the most economically destructive pests of fruits and vegetables especially in East Asia. Based on its phytophagous life style, this species dispersed with the diffusion and implementation of agriculture, while globalization allowed it to establish adventive populations in different tropical and subtropical areas of the world. We used nine SSR loci over twelve samples collected across East Asia, i.e. an area that, in relatively few years, has become a theatre of intensive agriculture and a lively fruit trade. Our aim is to disentangle the different forces that have affected the invasion pattern and shaped the genetic make-up of populations of this fruit fly. Our data suggest that the considered samples probably represent well established populations in terms of genetic variability and population structuring. The human influence on the genetic shape of populations and diffusion is evident, but factors such as breeding/habitat size and life history traits of the species may have determined the post introduction phases and expansion. In East Asia the origin of diffusion can most probably be allocated in the oriental coastal provinces of China, from where this fruit fly spread into Southeast Asia. The spread of this species deserves attention for the development and implementation of risk assessment and control measures.

Collaboration


Dive into the Mosè Manni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge