Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moshe Goldsmith is active.

Publication


Featured researches published by Moshe Goldsmith.


Nature Chemical Biology | 2012

Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis

Sagar D. Khare; Yakov Kipnis; Per Greisen; Ryo Takeuchi; Yacov Ashani; Moshe Goldsmith; Yifan Song; Jasmine L. Gallaher; Israel Silman; Haim Leader; Joel L. Sussman; Barry L. Stoddard; Dan S. Tawfik; David Baker

The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency (k(cat)/K(m)) of ~10(4) M(-1) s(-1) after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzes the hydrolysis of the R(P) isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.


Current Opinion in Structural Biology | 2012

Directed enzyme evolution: beyond the low-hanging fruit

Moshe Goldsmith; Dan S. Tawfik

The field of directed evolution has progressed to the point where it is feasible to engineer enzymes for unnatural substrates and reactions with catalytic efficiencies and regio-specificity or stereo-specificity that rival those of natural enzymes. Here, we describe the conceptual and methodological advances that have enabled this progress. We address methodologies based on small libraries enriched with improved variants and carrying compensatory stabilizing mutations. Such libraries can be combined with low-throughput screens that provide high accuracy and directly target the desired substrate and reaction conditions, and thereby provide highly improved variants.


Nature Chemical Biology | 2011

Directed evolution of hydrolases for prevention of G-type nerve agent intoxication

Rinkoo D. Gupta; Moshe Goldsmith; Yacov Ashani; Yair Simo; Gavriel Mullokandov; Hagit Bar; Moshe Ben-David; Haim Leader; Raanan Margalit; Israel Silman; Joel L. Sussman; Dan S. Tawfik

Organophosphate nerve agents are extremely lethal compounds. Rapid in vivo organophosphate clearance requires bioscavenging enzymes with catalytic efficiencies of >10(7) (M(-1) min(-1)). Although serum paraoxonase (PON1) is a leading candidate for such a treatment, it hydrolyzes the toxic S(p) isomers of G-agents with very slow rates. We improved PON1s catalytic efficiency by combining random and targeted mutagenesis with high-throughput screening using fluorogenic analogs in emulsion compartments. We thereby enhanced PON1s activity toward the coumarin analog of S(p)-cyclosarin by ∼10(5)-fold. We also developed a direct screen for protection of acetylcholinesterase from inactivation by nerve agents and used it to isolate variants that degrade the toxic isomer of the coumarin analog and cyclosarin itself with k(cat)/K(M) ∼ 10(7) M(-1) min(-1). We then demonstrated the in vivo prophylactic activity of an evolved variant. These evolved variants and the newly developed screens provide the basis for engineering PON1 for prophylaxis against other G-type agents.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Potential role of phenotypic mutations in the evolution of protein expression and stability

Moshe Goldsmith; Dan S. Tawfik

Phenotypic mutations (errors occurring during protein synthesis) are orders of magnitude more frequent than genetic mutations. Consequently, the sequences of individual protein molecules transcribed and translated from the same gene can differ. To test the effects of such mutations, we established a bacterial system in which an antibiotic resistance gene (TEM-1 β-lactamase) was transcribed by either a high-fidelity RNA polymerase or its error-prone mutant. This setup enabled the analysis of individual mRNA transcripts that were synthesized under normal or error-prone conditions. We found that an increase of ≈20-fold in the frequency of transcription errors promoted the evolution of higher TEM-1 expression levels and of more stable enzyme variants. The stabilized variants exhibited a distinct advantage under error-prone transcription, although under normal transcription they conferred resistance similar to wild-type TEM-1. They did so, primarily, by increasing TEM-1s tolerance to destabilizing deleterious mutations that arise from transcriptional errors. The stabilized TEM-1 variants also showed increased tolerance to genetic mutations. Thus, although phenotypic mutations are not individually subjected to inheritance and natural selection, as are genetic mutations, they collectively exert a direct and immediate effect on protein fitness. They may therefore play a role in shaping protein traits such as expression levels, stability, and tolerance to genetic mutations.


Molecular Cell | 2016

Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability

Adi Goldenzweig; Moshe Goldsmith; Shannon E. Hill; Or Gertman; Paola Laurino; Yacov Ashani; Orly Dym; Tamar Unger; Shira Albeck; Jaime Prilusky; Raquel L. Lieberman; Amir Aharoni; Israel Silman; Joel L. Sussman; Dan S. Tawfik; Sarel J. Fleishman

Summary Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il.


Chemico-Biological Interactions | 2010

Stereo-specific Synthesis of Analogs of Nerve Agents And Their Utilization For Selection And Characterization of Paraoxonase (PON1) Catalytic Scavengers

Yacov Ashani; Rinkoo D. Gupta; Moshe Goldsmith; Israel Silman; Joel L. Sussman; Dan S. Tawfik; Haim Leader

Fluorogenic organophosphate inhibitors of acetylcholinesterase (AChE) homologous in structure to nerve agents provide useful probes for high throughput screening of mammalian paraoxonase (PON1) libraries generated by directed evolution of an engineered PON1 variant with wild-type like specificity (rePON1). Wt PON1 and rePON1 hydrolyze preferentially the less-toxic R(P) enantiomers of nerve agents and of their fluorogenic surrogates containing the fluorescent leaving group, 3-cyano-7-hydroxy-4-methylcoumarin (CHMC). To increase the sensitivity and reliability of the screening protocol so as to directly select rePON1 clones displaying stereo-preference towards the toxic S(P) enantiomer, and to determine accurately K(m) and k(cat) values for the individual isomers, two approaches were used to obtain the corresponding S(P) and R(P) isomers: (a) stereo-specific synthesis of the O-ethyl, O-n-propyl, and O-i-propyl analogs and (b) enzymic resolution of a racemic mixture of O-cyclohexyl methylphosphonylated CHMC. The configurational assignments of the S(P) and R(P) isomers, as well as their optical purity, were established by X-ray diffraction, reaction with sodium fluoride, hydrolysis by selected rePON1 variants, and inhibition of AChE. The S(P) configuration of the tested surrogates was established for the enantiomer with the more potent anti-AChE activity, with S(P)/R(P) inhibition ratios of 10-100, whereas the R(P) isomers of the O-ethyl and O-n-propyl were hydrolyzed by wt rePON1 about 600- and 70-fold faster, respectively, than the S(P) counterpart. Wt rePON1-induced R(P)/S(P) hydrolysis ratios for the O-cyclohexyl and O-i-propyl analogs are estimated to be >>1000. The various S(P) enantiomers of O-alkyl-methylphosphonyl esters of CHMC provide suitable ligands for screening rePON1 libraries, and can expedite identification of variants with enhanced catalytic proficiency towards the toxic nerve agents.


Toxicology Letters | 2014

Post-exposure treatment of VX poisoned guinea pigs with the engineered phosphotriesterase mutant C23: A proof-of-concept study

Franz Worek; Thomas Seeger; Georg Reiter; Moshe Goldsmith; Yacov Ashani; Haim Leader; Joel L. Sussman; Nidhi Aggarwal; Horst Thiermann; Dan S. Tawfik

The highly toxic organophosphorus (OP) nerve agent VX is characterized by a remarkable biological persistence which limits the effectiveness of standard treatment with atropine and oximes. Existing OP hydrolyzing enzymes show low activity against VX and hydrolyze preferentially the less toxic P(+)-VX enantiomer. Recently, a phosphotriesterase (PTE) mutant, C23, was engineered towards the hydrolysis of the toxic P(-) isomers of VX and other V-type agents with relatively high in vitro catalytic efficiency (kcat/KM=5×10(6)M(-1)min(-1)). To investigate the suitability of the PTE mutant C23 as a catalytic scavenger, an in vivo guinea pig model was established to determine the efficacy of post-exposure treatment with C23 alone against VX intoxication. Injection of C23 (5mgkg(-1) i.v.) 5min after s.c. challenge with VX (∼2LD50) prevented systemic toxicity. A lower C23 dose (2mgkg(-1)) reduced systemic toxicity and prevented mortality. Delayed treatment (i.e., 15min post VX) with 5mgkg(-1) C23 resulted in survival of all animals and only in moderate systemic toxicity. Although C23 did not prevent inhibition of erythrocyte acetylcholinesterase (AChE) activity, it partially preserved brain AChE activity. C23 therapy resulted in a rapid decrease of racemic VX blood concentration which was mainly due to the rate of degradation of the toxic P(-)-VX enantiomer that correlates with the C23 blood levels and its kcat/KM value. Although performed under anesthesia, this proof-of-concept study demonstrated for the first time the ability of a catalytic bioscavenger to prevent systemic VX toxicity when given alone as a single post-exposure treatment, and enables an initial assessment of a time window for this approach. In conclusion, the PTE mutant C23 may be considered as a promising starting point for the development of highly effective catalytic bioscavengers for post-exposure treatment of V-agents intoxication.


Toxicology Letters | 2011

In vitro detoxification of cyclosarin in human blood pre-incubated ex-vivo with recombinant serum paraoxonases

Yacov Ashani; Moshe Goldsmith; Haim Leader; Israel Silman; Joel L. Sussman; Dan S. Tawfik

An ex vivo protocol was developed to assay the antidotal capacity of rePON1 variants to protect endogenous acetylcholinesterase and butyrylcholinesterase in human whole blood against OP nerve agents. This protocol permitted us to address the relationship between blood rePON1 concentrations, their kinetic parameters, and the level of protection conferred by rePON1 on the cholinesterases in human blood, following a challenge with cyclosarin (GF). The experimental data thus obtained were in good agreement with the predicted percent residual activities of blood cholinesterases calculated on the basis of the rate constants for inhibition of human acetylcholinesterase and butyrylcholinesterase by GF, the concentration of the particular rePON1 variant, and its k(cat)/K(m) value for GF. This protocol thus provides a rapid and reliable ex vivo screening tool for identification of rePON1 bioscavenger candidates suitable for protection of humans against organophosphorus-based toxicants. The results also permitted the refinement of a mathematical model for estimating the efficacious dose of rePON1s variants required for prophylaxis in humans.


Journal of Molecular Biology | 2008

Analysis of strand transfer and template switching mechanisms of DNA gap repair by homologous recombination in Escherichia coli: predominance of strand transfer.

Lior Izhar; Moshe Goldsmith; Ronny Dahan; Nicholas E. Geacintov; Robert G. Lloyd; Zvi Livneh

Daughter strand gaps formed upon interruption of replication at DNA lesions in Escherichia coli can be repaired by either translesion DNA synthesis or homologous recombination (HR) repair. Using a plasmid-based assay system that enables discrimination between strand transfer and template switching (information copying) modes of HR gap repair, we found that approximately 80% of strand gaps were repaired by physical strand transfer from the donor, whereas approximately 20% appear to be repaired by template switching. HR gap repair operated on both small and bulky lesions and largely depended on RecA and RecF but not on the RecBCD nuclease. In addition, we found that HR was mildly reduced in cells lacking the RuvABC and RecG proteins involved in resolution of Holliday junctions. These results, obtained for the first time under conditions that detect the two HR gap repair mechanisms, provide in vivo high-resolution molecular evidence for the predominance of the strand transfer mechanism in HR gap repair. A small but significant portion of HR gap repair appears to occur via a template switching mechanism.


Protein Engineering Design & Selection | 2017

Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers

Moshe Goldsmith; Nidhi Aggarwal; Yacov Ashani; Halim Jubran; Per Greisen; Sergey Ovchinnikov; Haim Leader; David Baker; Joel L. Sussman; Adi Goldenzweig; Sarel J. Fleishman; Dan S. Tawfik

Improving an enzymes initially low catalytic efficiency with a new target substrate by an order of magnitude or two may require only a few rounds of mutagenesis and screening or selection. However, subsequent rounds of optimization tend to yield decreasing degrees of improvement (diminishing returns) eventually leading to an optimization plateau. We aimed to optimize the catalytic efficiency of bacterial phosphotriesterase (PTE) toward V-type nerve agents. Previously, we improved the catalytic efficiency of wild-type PTE toward the nerve agent VX by 500-fold, to a catalytic efficiency (kcat/KM) of 5 × 106 M-1 min-1. However, effective in vivo detoxification demands an enzyme with a catalytic efficiency of >107 M-1 min-1. Here, following eight additional rounds of directed evolution and the computational design of a stabilized variant, we evolved PTE variants that detoxify VX with a kcat/KM ≥ 5 × 107 M-1 min-1 and Russian VX (RVX) with a kcat/KM ≥ 107 M-1 min-1. These final 10-fold improvements were the most time consuming and laborious, as most libraries yielded either minor or no improvements. Stabilizing the evolving enzyme, and avoiding tradeoffs in activity with different substrates, enabled us to obtain further improvements beyond the optimization plateau and evolve PTE variants that were overall improved by >5000-fold with VX and by >17 000-fold with RVX. The resulting variants also hydrolyze G-type nerve agents with high efficiency (GA, GB at kcat/KM > 5 × 107 M-1 min-1) and can thus serve as candidates for broad-spectrum nerve-agent prophylaxis and post-exposure therapy using low enzyme doses.

Collaboration


Dive into the Moshe Goldsmith's collaboration.

Top Co-Authors

Avatar

Dan S. Tawfik

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Yacov Ashani

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Haim Leader

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Joel L. Sussman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Israel Silman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Nidhi Aggarwal

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sarel J. Fleishman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

David Baker

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adi Goldenzweig

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge