Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moshe Lapidot is active.

Publication


Featured researches published by Moshe Lapidot.


Molecular Plant-microbe Interactions | 2010

Emerging viral diseases of tomato crops.

Inge M. Hanssen; Moshe Lapidot; Bart P. H. J. Thomma

Viral diseases are an important limiting factor in many crop production systems. Because antiviral products are not available, control strategies rely on genetic resistance or hygienic measures to prevent viral diseases, or on eradication of diseased crops to control such diseases. Increasing international travel and trade of plant materials enhances the risk of introducing new viruses and their vectors into production systems. In addition, changing climate conditions can contribute to a successful spread of newly introduced viruses or their vectors and establishment of these organisms in areas that were previously unfavorable. Tomato is economically the most important vegetable crop worldwide and many viruses infecting tomato have been described, while new viral diseases keep emerging. Pepino mosaic virus is a rapidly emerging virus which has established itself as one of the most important viral diseases in tomato production worldwide over recent years. Begomovirus species and other whitefly-transmitted viruses are invading into new areas, and several recently described new viruses such as Tomato torrado virus and new Tospovirus species are rapidly spreading over large geographic areas. In this article, emerging viruses of tomato crops are discussed.


Plant Disease | 1997

Comparison of Resistance Level to Tomato Yellow Leaf Curl Virus Among Commercial Cultivars and Breeding Lines

Moshe Lapidot; Michael Friedmann; Oded Lachman; Avidan Yehezkel; Saadia Nahon; Shlomo Cohen; Meir Pilowsky

The effect of tomato yellow leaf curl virus (TYLCV) on total yield and yield components of various resistant F1 tomato cultivars and new breeding lines was evaluated in the field. Seeds of the F1 hybrids 8484, 3761, Fiona, and Tyking and the new breeding lines TY172 and TY197 were sown in an insect-proof greenhouse. When the seedlings reached the first-leaf stage, they were inoculated with TYLCV by means of the whitefly vector Bemisia tabaci. Noninoculated plants of the same cultivar or line which were exposed to nonviruliferous whiteflies served as controls. After a short recovery period, the plants were transplanted to the field. The inoculated plants of each cultivar or line were compared with their respective control, noninoculated plants, in terms of total yield, average fruit weight and number, and plant fresh weight. Disease symptom development and virus accumulation in the inoculated plants were monitored. There were substantial differences among the different entries tested in the extent of yield loss relative to the corresponding noninoculated control plants as well as viral DNA accumulation levels. Plants of TY172 and TY197 suffered the least relative yield loss and contained the lowest level of viral DNA. Therefore, these two lines exhibited the highest level of resistance. These results clearly demonstrate the ability of the various resistant tomato cultivars and lines to inhibit the effects of the virus, even following inoculation at a very early stage of plant development.


Phytopathology | 2001

Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector

Moshe Lapidot; Michael Friedmann; Meir Pilowsky; Rachel Ben-Joseph; Shlomo Cohen

ABSTRACT The effect that Tomato yellow leaf curl virus (TYLCV)-infected resistant tomato plants may have on virus epidemiology was studied. Four tomato genotypes that exhibit different levels of viral resistance, ranging from fully susceptible to highly resistant, served as TYLCV-infected source plants. Viral acquisition and transmission rates by white-flies following feeding on the different source plants were evaluated. TYLCV transmission rate by whiteflies that had fed on infected source plants 21 days postinoculation (DPI), shortly after the appearance of TYLCV symptoms, was negatively correlated with the level of resistance displayed by the source plant. Therefore, the higher the resistance, the lower the transmission rate. In addition, TYLCV DNA accumulation was shown to be lower in the resistant source plants compared with the susceptible plants. Whitefly survival rate, following feeding on source plants 21 DPI, was similar for all the cultivars tested. Significant differences in whitefly survival were found, however, following feeding on the infected source plants at 35 DPI; here, whitefly survival rate increased with higher levels of resistance displayed by the source plant. At 35 DPI, the susceptible plants had developed severe TYLCV disease symptoms, and transmission rates from these plants were the lowest, presumably due to the poor condition of these plants. Transmission rates from source plants displaying a medium level of resistance level were highest, with rates declining following feeding on source plants displaying higher levels of TYLCV resistance. TYLCV DNA accumulation in whiteflies following feeding on infected source plants at both 21 and 35 DPI was directly correlated with viral DNA accumulation in source plants. Results show that, in essence, the higher the resistance expressed, the less suitable the plant was as a viral source. Consequently, following acquisition from a highly resistant plant, TYLCV transmission by whiteflies will be less efficient.


Theoretical and Applied Genetics | 2009

Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum

Ilana Anbinder; Moshe Reuveni; Raviv Azari; Ilan Paran; Sahadia Nahon; Haviva Shlomo; Lea Chen; Moshe Lapidot; Ilan Levin

Tomato yellow leaf curl virus (TYLCV) is devastating to tomato (Solanum lycopersicum) crops and resistant cultivars are highly effective in controlling the disease. The breeding line TY172, originating from Solanum peruvianum, is highly resistant to TYLCV. To map quantitative trait loci (QTLs) controlling TYLCV resistance in TY172, appropriate segregating populations were analyzed using 69 polymorphic DNA markers spanning the entire tomato genome. Results show that TYLCV resistance in TY172 is controlled by a previously unknown major QTL, originating from the resistant line, and four additional minor QTLs. The major QTL, we term Ty-5, maps to chromosome 4 and accounts for 39.7–46.6% of the variation in symptom severity among segregating plants (LOD score 33–35). The minor QTLs, originated either from the resistant or susceptible parents, were mapped to chromosomes 1, 7, 9 and 11, and contributed 12% to the variation in symptom severity in addition to Ty-5.


Molecular Plant-microbe Interactions | 2000

Genetic Mapping of the Tsw Locus for Resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and Its Relationship to the Sw-5 Gene for Resistance to the Same Pathogen in Tomato

Molly Jahn; Ilan Paran; Katrin Hoffmann; Elaine R. Radwanski; Kevin D. Livingstone; Rebecca C. Grube; Ester Aftergoot; Moshe Lapidot; James Moyer

The Tsw gene conferring dominant resistance to the Tospovirus Tomato spotted wilt virus (TSWV) in Capsicum spp. has been tagged with a random amplified polymorphic DNA marker and mapped to the distal portion of chromosome 10. No mapped homologues of Sw-5, a phenotypically similar dominant TSWV resistance gene in tomato, map to this region in C. annuum, although a number of Sw-5 homologues are found at corresponding positions in pepper and tomato. The relationship between Tsw and Sw-5 was also examined through genetic studies of TSWV. The capacity of TSWV-A to overcome the Tsw gene in pepper and the Sw-5 gene in tomato maps to different TSWV genome segments. Therefore, despite phenotypic and genetic similarities of resistance in tomato and pepper, we infer that distinct viral gene products control the outcome of infection in plants carrying Sw-5 and Tsw, and that these loci do not appear to share a recent common evolutionary ancestor.


Environmental Entomology | 2001

Ultraviolet-deficient greenhouse environment affects whitefly : Attraction and flight-behavior

Yeheskel Antignus; David Nestel; Shlomo Cohen; Moshe Lapidot

Abstract The effect of a UV-deficient environment on the attraction and dispersal behavior of whiteflies, Bemisia argentifolii (Bellows & Perring), and on the transmission efficiency of the whitefly-borne tomato yellow leaf curl geminivirus, was tested under field conditions and through controlled experiments. We found that the rate of tomato yellow leaf curl virus-disease spread to tomato plants grown under walk-in tunnels covered with regular greenhouse plastic sheets increases sharply with time, whereas the virus infection-rate under UV-absorbing sheets proceeds at a very slow pace. Average number of whiteflies trapped under regular plastic sheet tunnels was significantly higher than numbers trapped in UV-absorbing plastic sheet tunnels. Similarly, the average number of whiteflies trapped on yellow-sticky traps placed on the outside walls of tunnels covered with regular plastic was higher than the number trapped on the outside walls of tunnels covered with UV-absorbing plastic sheets. No differences were found in the whitefly’s ability to transmit tomato yellow leaf curl virus under the two types of plastic covers. Whitefly dispersal pattern under the two types of plastic covers was examined using a release-recapture experiment. In each type of walk-in tunnel we established a grid of yellow-sticky traps forming two concentric circles: an inner and an external. Under UV-absorbing tunnels, significantly higher numbers of whiteflies were captured on the internal circle of traps than the external circle. The fraction of whiteflies that were captured on the external circle was much higher under regular covers, when compared with UV-absorbing covers, suggesting that filtration of UV light hindered the ability of whiteflies to disperse inside these plastic tunnels. Our results indicate that the mechanisms by which UV-deficiency protects covered crops from insect infestation and spread of viruses are that the lack of UV interferes with insect flight orientation; and that the lack of UV radiation alters the normal behavior of the invading insects, resulting in reduced dispersal activity.


Theoretical and Applied Genetics | 2001

Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum

A. Ben Chaim; Rebecca C. Grube; Moshe Lapidot; Molly Jahn; Ilan Paran

Abstract QTL analysis for resistance to cucumber mosaic virus (CMV) was performed in an intraspecific Capsicum annuum population. A total of 180 F3 families were derived from a cross between the susceptible bell-type cultivar Maor and the resistant small-fruited Indian line Perennial and inoculated with CMV in three experiments carried out in the USA and Israel using two virus isolates. Mostly RFLP and AFLP markers were used to construct the genetic map, and interval analysis was used for QTL detection. Four QTL were significantly associated with resistance to CMV. Two digenic interactions involving markers with and without an individual effect on CMV resistance were also detected. The QTL controlling the largest percentage (16–33%) of the observed phenotypic variation (cmv11.1) was detected in all three experiments and was also involved in one of the digenic interactions. This QTL is linked to the L locus that confers resistance to tobacco mosaic virus (TMV), confirming earlier anecdotal observations of an association between resistance to CMV and susceptibility to TMV in Perennial. An advanced backcross breeding line from an unrelated population, 3990, selected for resistance to CMV was analyzed for markers covering the genome, allowing the identification of genomic regions introgressed from Perennial. Four of these introgressions included regions associated with QTL for CMV resistance. Markers in two genomic regions that were identified as linked to QTL for CMV resistance were also linked to QTL for fruit weight, confirming additional breeding observations of an association between resistance to CMV originating from Perennial and small fruit weight.


Molecular Plant-microbe Interactions | 2001

A dysfunctional movement protein of tobacco mosaic virus interferes with targeting of wild-type movement protein to microtubules.

Guy Kotlizky; Aviva Katz; Jessica van der Laak; Vitaly Boyko; Moshe Lapidot; Roger N. Beachy; Manfred Heinlein; Bernard L. Epel

The Tobacco mosaic virus (TMV) movement protein (MPTMV) mediates cell-to-cell viral trafficking by altering properties of the plasmodesmata (Pd) in infected cells. During the infection cycle, MPTMV becomes transiently associated with endomembranes, microfilaments, and microtubules (MT). It has been shown that the cell-to-cell spread of TMV is reduced in plants expressing the dysfunctional MP mutant MPNT-1. To expand our understanding of the MP function, we analyzed events occurring during the intracellular and intercellular targeting of MPTMV and MPNT-1 when expressed as a fusion protein to green fluorescent protein (GFP), either by biolistic bombardment in a viral-free system or from a recombinant virus. The accumulation of MPTMV:GFP, when expressed in a viral-free system, is similar to MPTMV:GFP in TMV-infected tissues. Pd localization and cell-to-cell spread are late events, occurring only after accumulation of MP:GFP in aggregate bodies and on MT in the target cell. MPNT-1:GFP localizes to MT but does not target to Pd nor does it move cell to cell. The spread of transiently expressed MPTMV:GFP in leaves of transgenic plants that produce MPNT-1 is reduced, and targeting of the MPTMV:GFP to the cytoskeleton is inhibited. Although MPTMV:GFP targets to the Pd in these plants, it is partially impaired for movement. It has been suggested that MPNT-1 interferes with host-dependent processes that occur during the intracellular targeting program that makes MP movement competent.


Phytopathology | 2006

Capsicum Species: Symptomless Hosts and Reservoirs of Tomato yellow leaf curl virus

Jane E. Polston; L. Cohen; T. A. Sherwood; Rachel Ben-Joseph; Moshe Lapidot

ABSTRACT Five Capsicum species were tested for susceptibility to Tomato yellow leaf curl virus (TYLCV) and the mild strain of TYLCV (TYLCV-Mld). TYLCV was able to infect 30 of 55 genotypes of C. annuum, one of six genotypes of C. chinense, one of two genotypes of C. baccatum, and the only genotype of C. frutescens tested but was unable to infect the one genotype of C. pubescens tested. This is the first evidence for the susceptibility of C. baccatum, C. chinense, and C. frutescens to TYLCV. Unlike TYLCV isolates, TYLCV-Mld was unable to infect C. chinense. No host differences were observed between the Israeli and Florida isolates of TYLCV. None of the Capsicum species showed symptoms after infection with TYLCV or TYLCV-Mld. TYLCV was detected in fruits of C. annuum, but whiteflies were unable to transmit virus from fruits to plants. White-flies were able to transmit both TYLCV and TYLCV-Mld from infected pepper plants to tomato plants. Pepper plants in research plots were found infected with TYLCV at rates as much as 100%. These data demonstrate the ability of some genotypes of pepper to serve as reservoirs for the acquisition and transmission of TYLCV and TYLCV-Mld.


Archive | 2007

Management of Tomato yellow leaf curl virus: US and Israel Perspectives

Jane E. Polston; Moshe Lapidot

Over the last 15 years, TYLCV has been a serious problem for tomato production in many parts of the world. The virus has been known in Israel for over 40 years and in Florida since 1997 (Cohen & Nitzany, 1966; Polston et al., 1997). In Israel, tomato crops are severely affected by epidemics of TYLCV and despite almost daily spraying with insecticides, 100% yield losses have often been recorded in cases where the whitefly populations were high (Cohen & Antignus, 1994). In Florida, there have been numerous crop failures due to TYLCV and costs of production have risen. TYLCV is considered the most important pathogen of tomato in Israel and in Florida (Lapidot & Friedmann, 2002). The management of TYLCV in tomato is difficult and expensive both in protected and open field production. Often management techniques are not sufficient and economic losses are incurred. Many approaches have been used to try to decrease losses due to TYLCV although only a few are frequently effective and some cannot be used in all climates and locations. In general, no single approach is effective to manage TYLCV. Combinations of chemical and cultural techniques are employed to (1) reduce the number and movement of the whitefly vector, and (2) minimize or eliminate inoculum sources of TYLCV. Management of TYLCV is often expensive and difficult but not always successful. In both Florida and Israel, multiple techniques are employed simultaneously to reduce incidences of TYLCV-infected plants. In Israel, TYLCV is managed primarily through the use of resistant cultivars, pesticides, cultural practices, and exclusion through the use of 50 mesh screens, and regular or UV absorbing plastics in the case of protected production. In Florida, where the

Collaboration


Dive into the Moshe Lapidot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lael Anson Best

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar

Ran Kremer

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar

Abraham Loyter

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Faber Dl

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar

Rony-Reuven Nir

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar

Israel Vlodavsky

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Neta Ilan

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge