Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moshe Szyf is active.

Publication


Featured researches published by Moshe Szyf.


Nature Neuroscience | 2009

Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse

Patrick O. McGowan; Aya Sasaki; Ana C. D'Alessio; Sergiy Dymov; Benoit Labonté; Moshe Szyf; Gustavo Turecki; Michael J. Meaney

Maternal care influences hypothalamic-pituitary-adrenal (HPA) function in the rat through epigenetic programming of glucocorticoid receptor expression. In humans, childhood abuse alters HPA stress responses and increases the risk of suicide. We examined epigenetic differences in a neuron-specific glucocorticoid receptor (NR3C1) promoter between postmortem hippocampus obtained from suicide victims with a history of childhood abuse and those from either suicide victims with no childhood abuse or controls. We found decreased levels of glucocorticoid receptor mRNA, as well as mRNA transcripts bearing the glucocorticoid receptor 1F splice variant and increased cytosine methylation of an NR3C1 promoter. Patch-methylated NR3C1 promoter constructs that mimicked the methylation state in samples from abused suicide victims showed decreased NGFI-A transcription factor binding and NGFI-A–inducible gene transcription. These findings translate previous results from rat to humans and suggest a common effect of parental care on the epigenetic regulation of hippocampal glucocorticoid receptor expression.


Journal of Molecular Medicine | 2008

Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells

Angela O. Choi; Shelley E. Brown; Moshe Szyf; Dusica Maysinger

The staggering array of nanotechnological products, found in our environment and those applicable in medicine, has stimulated a growing interest in examining their long-term impact on genetic and epigenetic processes. We examined here the epigenomic and genotoxic response to cadmium telluride quantum dots (QDs) in human breast carcinoma cells. QD treatment induced global hypoacetylation implying a global epigenomic response. The ubiquitous responder to genotoxic stress, p53, was activated by QD challenge resulting in translocation of p53, with subsequent upregulation of downstream targets Puma and Noxa. Consequential decrease in cell viability was in part prevented by the p53 inhibitor pifithrin-α, suggesting that p53 translocation contributes to QD-induced cytotoxicity. These findings suggest three levels of nanoparticle-induced cellular changes: non-genomic, genomic and epigenetic. Epigenetic changes may have long-term effects on gene expression programming long after the initial signal has been removed, and if these changes remain undetected, it could lead to long-term untoward effects in biological systems. These studies suggest that aside from genotoxic effects, nanoparticles could cause more subtle epigenetic changes which merit thorough examination of environmental nanoparticles and novel candidate nanomaterials for medical applications.


The Journal of Neuroscience | 2005

Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life.

Ian C. G. Weaver; Frances A. Champagne; Shelley E. Brown; Sergiy Dymov; Shakti Sharma; Michael J. Meaney; Moshe Szyf

Stress responses in the adult rat are programmed early in life by maternal care and associated with epigenomic marking of the hippocampal exon 17 glucocorticoid receptor (GR) promoter. To examine whether such epigenetic programming is reversible in adult life, we centrally infused the adult offspring with the essential amino acid l-methionine, a precursor to S-adenosyl-methionine that serves as the donor of methyl groups for DNA methylation. Here we report that methionine infusion reverses the effect of maternal behavior on DNA methylation, nerve growth factor-inducible protein-A binding to the exon 17 promoter, GR expression, and hypothalamic-pituitary-adrenal and behavioral responses to stress, suggesting a causal relationship among epigenomic state, GR expression, and stress responses in the adult offspring. These results demonstrate that, despite the inherent stability of the epigenomic marks established early in life through behavioral programming, they are potentially reversible in the adult brain.


Nature | 1999

A mammalian protein with specific demethylase activity for mCpG DNA.

Sanjoy K. Bhattacharya; Shyam Ramchandani; Nadia Cervoni; Moshe Szyf

DNA-methylation patterns are important for regulating genome functions, and are determined by the enzymatic processes of methylation and demethylation. The demethylating enzyme has now been identified: a mammalian complementary DNA encodes a methyl-CpG-binding domain, bears a demethylase activity that transforms methylated cytosine bases to cytosine, and demethylates a plasmid when the cDNA is translated or transiently transfected into human embryonal kidney cells in vitro. The discovery of this DNA demethylase should provide a basis for the molecular and developmental analysis of the role of DNA methylation and demethylation.


The Journal of Neuroscience | 2007

The Transcription Factor Nerve Growth Factor-Inducible Protein A Mediates Epigenetic Programming: Altering Epigenetic Marks by Immediate-Early Genes

Ian C. G. Weaver; Ana C. D'Alessio; Shelley E. Brown; Ian C. Hellstrom; Sergiy Dymov; Shakti Sharma; Moshe Szyf; Michael J. Meaney

Maternal care alters epigenetic programming of glucocorticoid receptor (GR) gene expression in the hippocampus, and increased postnatal maternal licking/grooming (LG) behavior enhances nerve growth factor-inducible protein A (NGFI-A) transcription factor binding to the exon 17 GR promoter within the hippocampus of the offspring. We tested the hypothesis that NGFI-A binding to the exon 17 GR promoter sequence marks this sequence for histone acetylation and DNA demethylation and that such epigenetic alterations subsequently influence NGFI-A binding and GR transcription. We report that (1) NGFI-A binding to its consensus sequence is inhibited by DNA methylation, (2) NGFI-A induces the activity of exon 17 GR promoter in a transient reporter assay, (3) DNA methylation inhibits exon 17 GR promoter activity, and (4) whereas NGFI-A interaction with the methylated exon 17 GR promoter is reduced, NGFI-A overexpression induces histone acetylation, DNA demethylation, and activation of the exon 17 GR promoter in transient transfection assays. Site-directed mutagenesis assays demonstrate that NGFI-A binding to the exon 17 GR promoter is required for such epigenetic reprogramming. In vivo, enhanced maternal LG is associated with increased NGFI-A binding to the exon 17 GR promoter in the hippocampus of pups, and NGFI-A-bound exon 17 GR promoter is unmethylated compared with unbound exon 17 GR promoter. Knockdown experiments of NGFI-A in hippocampal primary cell culture show that NGFI-A is required for serotonin-induced DNA demethylation and increased exon 17 GR promoter expression. The data are consistent with the hypothesis that NGFI-A participates in epigenetic programming of GR expression.


Nature Neuroscience | 2014

Alzheimer's disease: early alterations in brain DNA methylation at ANK1 , BIN1 , RHBDF2 and other loci

Philip L. De Jager; Gyan Srivastava; Katie Lunnon; Jeremy D. Burgess; Leonard C. Schalkwyk; Lei Yu; Matthew L. Eaton; Brendan T. Keenan; Jason Ernst; Cristin McCabe; Anna Tang; Towfique Raj; Joseph M. Replogle; Wendy Brodeur; Stacey Gabriel; High Seng Chai; Curtis S. Younkin; Steven G. Younkin; Fanggeng Zou; Moshe Szyf; Charles B. Epstein; Julie A. Schneider; Bradley E. Bernstein; Alexander Meissner; Nilufer Ertekin-Taner; Lori B. Chibnik; Manolis Kellis; Jonathan Mill; David A. Bennett

We used a collection of 708 prospectively collected autopsied brains to assess the methylation state of the brains DNA in relation to Alzheimers disease (AD). We found that the level of methylation at 71 of the 415,848 interrogated CpGs was significantly associated with the burden of AD pathology, including CpGs in the ABCA7 and BIN1 regions, which harbor known AD susceptibility variants. We validated 11 of the differentially methylated regions in an independent set of 117 subjects. Furthermore, we functionally validated these CpG associations and identified the nearby genes whose RNA expression was altered in AD: ANK1, CDH23, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2. Our analyses suggest that these DNA methylation changes may have a role in the onset of AD given that we observed them in presymptomatic subjects and that six of the validated genes connect to a known AD susceptibility gene network.


Annals of the New York Academy of Sciences | 2004

Early Environmental Regulation of Hippocampal Glucocorticoid Receptor Gene Expression: Characterization of Intracellular Mediators and Potential Genomic Target Sites

Ian C. G. Weaver; Josie Diorio; Jonathan R. Seckl; Moshe Szyf; Michael J. Meaney

Abstract: Environmental conditions in early life permanently alter the development of glucocorticoid receptor gene expression in the hippocampus and hypothalamic‐pituitary‐adrenal responses to acute or chronic stress. In part, these effects can involve an activation of ascending serotonergic pathways and subsequent changes in the expression of transcription factors that might drive glucocorticoid receptor expression in the hippocampus. This paper summarizes the evidence in favor of these pathways as well as recent studies describing regulatory targets within the chromatin structure of the promoter region of the rat hippocampal glucocorticoid receptor gene.


Annual Review of Pharmacology and Toxicology | 2009

Epigenetics, DNA Methylation, and Chromatin Modifying Drugs

Moshe Szyf

Evidence is emerging that several diseases and behavioral pathologies result from defects in gene function. The best-studied example is cancer, but other diseases such as autoimmune disease, asthma, type 2 diabetes, metabolic disorders, and autism display aberrant gene expression. Gene function may be altered by either a change in the sequence of the DNA or a change in epigenetic programming of a gene in the absence of a sequence change. With epigenetic drugs, it is possible to reverse aberrant gene expression profiles associated with different disease states. Several epigenetic drugs targeting DNA methylation and histone deacetylation enzymes have been tested in clinical trials. Understanding the epigenetic machinery and the differential roles of its components in specific disease states is essential for developing targeted epigenetic therapy.


Frontiers in Neuroendocrinology | 2005

Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat

Moshe Szyf; Ian C. G. Weaver; Francis A. Champagne; Josie Diorio; Michael J. Meaney

Increased levels of pup licking/grooming and arched-back nursing by rat mothers over the first week of life alter the epigenome at a glucocorticoid receptor gene promoter in the hippocampus of the offspring. Differences in the DNA methylation pattern between the offspring of High and Low licking/grooming--arched-back mothers emerge over the first week of life, are reversed with cross-fostering, persist into adulthood and are associated with altered histone acetylation and transcription factor (NGFI-A) binding to the glucocorticoid receptor promoter. Central infusion of the adult offspring with the histone deacetylase inhibitor trichostatin A removes the previously defined epigenomic group differences in histone acetylation, DNA methylation, NGFI-A binding, glucocorticoid receptor expression, and hypothalamic-pituitary-adrenal responses to stress, thus suggesting a causal relation between the epigenomic state, glucocorticoid receptor expression and the effects of maternal care on stress responses in the offspring. These findings demonstrate that an epigenomic state of a gene can be established through a behavioral mode of programming and that in spite of the inherent stability of this epigenomic mark, it is dynamic and potentially reversible.


PLOS ONE | 2011

Broad Epigenetic Signature of Maternal Care in the Brain of Adult Rats

Patrick O. McGowan; Matthew Suderman; Aya Sasaki; Tony C. T. Huang; Michael Hallett; Michael J. Meaney; Moshe Szyf

Background Maternal care is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. In the rat, these effects are reversed by cross-fostering, demonstrating that they are defined by epigenetic rather than genetic processes. However, epigenetic changes at a single gene promoter are unlikely to account for the range of outcomes and the persistent change in expression of hundreds of additional genes in adult rats in response to differences in maternal care. Methodology/Principal Findings We examine here using high-density oligonucleotide array the state of DNA methylation, histone acetylation and gene expression in a 7 million base pair region of chromosome 18 containing the NR3C1 gene in the hippocampus of adult rats. Natural variations in maternal care are associated with coordinate epigenetic changes spanning over a hundred kilobase pairs. The adult offspring of high compared to low maternal care mothers show epigenetic changes in promoters, exons, and gene ends associated with higher transcriptional activity across many genes within the locus examined. Other genes in this region remain unchanged, indicating a clustered yet specific and patterned response. Interestingly, the chromosomal region containing the protocadherin-α, -β, and -γ (Pcdh) gene families implicated in synaptogenesis show the highest differential response to maternal care. Conclusions/Significance The results suggest for the first time that the epigenetic response to maternal care is coordinated in clusters across broad genomic areas. The data indicate that the epigenetic response to maternal care involves not only single candidate gene promoters but includes transcriptional and intragenic sequences, as well as those residing distantly from transcription start sites. These epigenetic and transcriptional profiles constitute the first tiling microarray data set exploring the relationship between epigenetic modifications and RNA expression in both protein coding and non-coding regions across a chromosomal locus in the mammalian brain.

Collaboration


Dive into the Moshe Szyf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo Turecki

Douglas Mental Health University Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge